WOLFRAM NOTEBOOK

Relationship between window function's bandwidth and response time

Brick-wall Window
w_bw[T_,t_]=Assuming[T>0,UnitBox[t/T]]
Out[]=
UnitBox
t
T
With[{T=1},Plot[w_bw[T,t],{t,-T,T},ExclusionsStyleDashed,AxesLabelAutomatic,PlotLabel"Time Domain Form"]]
Out[]=
W_bw[T_,ω_]=Assuming[T>0,Simplify[FourierTransform[w_bw[T,t],t,ω,FourierParameters{0,-1}]]]
Out[]=
TSinc
Tω
2
2π
With[{T=1},Plot[W_bw[T,ω],{ω,-2Pi*10/T,2Pi*10/T},PlotRangeFull,AxesLabelAutomatic,PlotLabel"Frequency Domain Form"]]
Out[]=
tot_freq_wgt_bw=Assuming[T>0,Integrate[W_bw[T,ω],{ω,-Infinity,Infinity}]](*totalweightofbrickwallwindowinfrequencydomain*)
Out[]=
2π
norm_freq_wgt_bw[T_,B_ω_]=Assuming[T>0&&B_ω0,Integrate[W_bw[T,ω],{ω,-B_ω/2,B_ω/2}]]/tot_freq_wgt_bw(*B_ωisbandwidth.*)
Out[]=
2SinIntegral
B_ωT
4
π
Assuming[T>0,Plot[norm_freq_wgt_bw[T,x/T],{x,0,2Pi*20},GridLinesAutomatic,AxesLabel{"TB_ω"},PlotLabel"Normalized Frequency Cumulative Weight"]]
Out[]=
As shown in the above figure,
T
B
ω
50
is sufficient for 95 % of total weight to be included in the range
[-
B
ω
/2,
B
ω
/2]
. So a given
B
ω
2π
B
f
, T should be
25
2π
B
f
3.98
B
f
or more.
Gaussian Window
w_G[σ_,t_]=Assuming[σ>0,Exp[-t^2/(2σ^2)]]
Out[]=
-
2
t
2
2
σ
With[{σ=1},Plot[w_G[σ,t],{t,-5σ,5σ},ExclusionsStyleDashed,AxesLabelAutomatic,PlotLabel"Time Domain Form"]]
Out[]=
W_G[σ_,ω_]=Assuming[σ>0,Simplify[FourierTransform[w_G[σ,t],t,ω,FourierParameters{0,-1}]]]
Out[]=
-
1
2
2
σ
2
ω
σ
With[{σ=1},Plot[W_G[σ,ω],{ω,-5/σ,5/σ},PlotRangeFull,AxesLabelAutomatic,PlotLabel"Frequency Domain Form"]]
Out[]=
tot_freq_wgt_G=Assuming[σ>0,Integrate[W_G[σ,ω],{ω,-Infinity,Infinity}]](*totalweightofbrickwallfilterinfrequencydomain*)
Out[]=
2π
norm_freq_wgt_G[σ_,B_ω_]=Assuming[σ>0&&B_ω0,Integrate[W_G[σ,ω],{ω,-B_ω/2,B_ω/2}]]/tot_freq_wgt_G(*B_ωisbandwidth.*)
Out[]=
Erf
B_ωσ
2
2
Assuming[σ>0,Plot[norm_freq_wgt_G[σ,x/σ],{x,0,5},GridLinesAutomatic,AxesLabel{"σB_ω"},PlotLabel"Normalized Frequency Cumulative Weight"]]
Out[]=
As in the case of the Brick-wall Window, σ should be 4/(2π
B
f
) or more to ensure that 95 % of weight is included in the range
[-
B
ω
/2,
B
ω
/2]
. The practical finite time length approximation of the window will be the [-3σ,3σ][-1.91/
B
f
,1.91/
B
f
] part of the original function
w
G
.
Hann Window
w_Hann[T_,t_]=Assuming[T>0,Cos[(Pi*t)/T]^2]*UnitBox[t/T]
Out[]=
2
Cos
πt
T
UnitBox
t
T
With[{T=1},Plot[w_Hann[T,t],{t,-T,T},ExclusionsStyleDashed,AxesLabelAutomatic,PlotLabel"Time Domain Form"]]
Out[]=
Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.