PolyLog Function
PolyLog Function
The polylogarithm function (or Jonquière's function) (z) of index and argument is a special function, defined in the complex plane for and by analytic continuation otherwise. It can be plotted for complex values ; for example, along the celebrated critical line for Riemann's zeta function[1]. The polylogarithm function appears in the Fermi–Dirac and Bose–Einstein distributions and also in quantum electrodynamics calculations for Feynman diagrams. The 2D plot shows the function , and the 3D plot shows .
Li
s
s
z
|z|<1
s=a+bi
s=1/2+bi
x⟶f((x+i))
Li
a+bi
b
0
(x,y)⟶f((x+yi))
Li
a+bi
Details
Details
The polylogarithm function is defined as
Li
s
∞
∑
k=1
k
z
s
k
For , it is equivalent to the natural logarithm, (z)=ln(1-z). For and , it is called the dilogarithm and the trilogarithm; the integral of a polylogarithm is itself a polylogarithm
s=1
Li
1
s=2
s=3
Li
s+1
z
∫
0
Li
s
t
References
References
[1] L. Vepstas. "Polylogarithm, The Movie." (Nov 20, 2014) linas.org/art-gallery/polylog/polylog.html.
[2] T. M. Apostol. "Zeta and Related Functions." NIST Digital Library of Mathematical Functions, Version 1.0.9, Release date 2014-08-29. dlmf.nist.gov/25.12.
[3] Souichiro-Ikebe. "Polylogarithm Function." (Dec 4, 2015) Graphics Library of Special Functions (in Japanese). http://math-functions-1.watson.jp/sub1_spec_040.html.
External Links
External Links
Permanent Citation
Permanent Citation
Enrique Zeleny
"PolyLog Function"
http://demonstrations.wolfram.com/PolyLogFunction/
Wolfram Demonstrations Project
Published: November 24, 2014