WOLFRAM NOTEBOOK

Six Incircles in an Equilateral Triangle

d(APC')
0.58
d(BPA')
0.27
d(CPB')
0.35
d(C'PB)
0.51
d(A'PC)
0.25
d(B'PA)
0.44
d(APC')
+
d(BPA')
+
d(CPB')
1.20
d(C'PB)
+
d(A'PC)
+
d(B'PA)
1.20
From an interior point P of an equilateral triangle ABC draw lines perpendicular to the sides. Let A', B', and C' be the points on the sides opposite A, B and C. Inscribe circles in the six subtriangles. Let
d
(XYZ) denote the diameter of the incircle in triangle XYZ.
Then the sum of the diameters of the red circles equals the sum of the diameters of the blue circles:
d
(APC') +
d
(BPA') +
d
(CPB') =
d
(C' PB) +
d
(A' PC) +
d
(B' PA)

Details

External Links

Permanent Citation

Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.