NOTE: evaluate the entire notebook twice for best results.
In[]:=
ClearAll["Global`*"];(*Thisfunctionclearsanypastdefinitionsofthevariables*)
Thermophysical properties of Paraffin
Thermophysical properties of Paraffin
In[]:=
Tm=303;(*meltingtempreratureoftheparaffin*)ρs=880;ρl=760;ρ=ρl;(*densityatsolidandliquidstates*)ks=0.24;kl=0.15;(*thermalconductivityatsolidandliquidstates*)cps=2.4*;cpl=1.8*;(*specificheatatsolidandliquidstates*)q=179*;(*latentheatoffusion*)vd=3.42;(*dynamicviscosityofparaffin*)vk=;(*kinematicviscosityofparaffin*)
3
10
3
10
3
10
vd
ρ
Parameters
Parameters
In[]:=
keq=1;(*equivalentthermalconductivity*)(*sinceRayleighnumber=0(i.e.≤5×)forfigure3(c),keqisassumedequalto1*)(*PARAMETERVALUES*)R=5*;(*radiusofthesphere*)Ti=295;(*initialtemperatureoftheparaffin*)(*PARAMETERVALUESSPECIFICTOFIGURE3(c)OFBECHIRIETAL.2020*)ste=0.05;(*Stefannumber*)ra=0;(*Rayleighnumber*)bi=10;(*Biotnumber*)G=0;(*dimensionlessheatsinkparameter*)
4
10
-2
10
Formulas
Formulas
In[]:=
αs=;(*thermaldiffusivityatsolidstate*)αl=;(*thermaldiffusivityatliquidstate*)pr=;(*Prandtlnumber*)gdot=;(*heatsinkparameter*)ξ=τ;(*massproportionofliquidinthemixture;ttakenasτ*)T0=Tm+;(*temperatureoutsidethesphere;itdependsonthestefannumberdesiredforthesimulation*)γ=;(*solid-to-liquidthermalconductivityratio*)Γ=;(*solid-to-liquidthermaldiffusivityratio*)θi=;(*dimensionlessinitialtemperature*)λn=;
ks
ρscps
kl
ρlcpl
vk
αl
Gkl(T0-Tm)
2
R
gdot
ρq
2
R
αl
2
r
αl
qste
cpl
ks
kl
αs
αl
Ti-Tm
T0-Tm
nπ
splus
2
λ
n
ψ
n
dψ
n
dη
2
λ
n
Γψ
n
In[]:=
Solution:
Solution:
In[]:=
θl=-bi-+Erfc-Erfckeq-bi-Exp+Erfc-Erfc--+-1;
keqτ
Exp
-
2
η
4keqτ
η
Exp
-
2
splus
4keqτ
splus
π
2
splus
2
keqτ
η
2
keqτ
keqτ
Exp-1
4keqτ
keqτ
Exp-1
4keqτ
1
splus
-
2
splus
4keqτ
π
2
splus
2
keqτ
1
2
keqτ
G
6keq
2
splus
2
η
splus
η
bi(-1)-2keq
2
splus
bi+splus(keq-bi)
In[]:=
θs=-(-)+2Sumθi+γExp[-Γτ],{n,1,20};
G
6γ
2
splus
2
η
n+1
(-1)
2
λn
G
2
λn
Sin[λnη]
η
2
λn
In[]:=
data3c={{303.712036,0.049948025},{6782.902137,0.04464657},{13667.04162,0.04043659},{20449.94376,0.037006237},{27334.08324,0.033835759},{34116.98538,0.030925156},{41001.12486,0.028066528},{47784.027,0.025259875},{54668.16648,0.022401247},{61552.30596,0.019386694},{68335.2081,0.016216216},{75219.34758,0.012577963},{82002.24972,0.008056133},{87165.35433,0}};s=Fit[data3c,{1,t,,,,,,,,,},t];
2
t
3
t
4
t
5
t
6
t
7
t
8
t
9
t
10
t
In[]:=
sFunc[t_]=s;
In[]:=
Show[ListPlot[data3c,PlotStyle->{Red,PointSize[Medium]},PlotLegends->{"Data points"}],Plot[sFunc[t],{t,0,90000},PlotStyle->Blue,PlotLegends->{"Fitted polynomial"}],GridLines->Automatic,Frame->True,FrameLabel->{"t","y"},PlotLabel->"Polynomial Fit to Data"]
Out[]=
Transformations:
Transformations:
In[]:=
τ=;splus=s/R;η=r/R;
αlt
2
R
In[]:=
Tl[r_,t_]=θl(T0-Tm)+Tm;Ts[r_,t_]=θs(T0-Tm)+Tm;
Visualization:
Visualization:
In[]:=
ManipulatePlotPiecewise[{{Ts[r,t],0<r<sFunc[t]},{Tl[r,t],r>sFunc[t]}}],100sFunc[t]
1-
+Tm,-100sFunc[t]2
r
sFunc[t]
1-
+Tm,{r,-R,R},PlotTheme{"Detailed"},AspectRatio1,PlotRange{298,308},PlotLegendsNone,PlotStyle{Red,Blue,Blue},FillingStyle{White},Filling{2{3}},Prolog{LightBlue,Scaled/@Rectangle[{0,0},{1,1}]},{t,0,24.2*60*60}2
r
sFunc[t]
Out[]=