Following the notation of the paper, we have
In[]:=
f=6(x^2+κ*y^2)((z-1)*(x^2+y^2+(z-1)^2)^(-5/2)-(z+1)*(x^2+y^2+(z+1)^2)^(-5/2))-(1+κ)((z-1)*(x^2+y^2+(z-1)^2)^(-3/2)-(z+1)*(x^2+y^2+(z+1)^2)^(-3/2))
Out[]=
--(1+κ)+6-(+κ)
-1+z
3/2
(++)
2
x
2
y
2
(-1+z)
1+z
3/2
(++)
2
x
2
y
2
(1+z)
-1+z
5/2
(++)
2
x
2
y
2
(-1+z)
1+z
5/2
(++)
2
x
2
y
2
(1+z)
2
x
2
y
In[]:=
integrand=f*(x^2+y^2+(z-1)^2)^(-1/2)
Out[]=
--(1+κ)+6-(+κ)++
-1+z
3/2
(++)
2
x
2
y
2
(-1+z)
1+z
3/2
(++)
2
x
2
y
2
(1+z)
-1+z
5/2
(++)
2
x
2
y
2
(-1+z)
1+z
5/2
(++)
2
x
2
y
2
(1+z)
2
x
2
y
2
x
2
y
2
(-1+z)
Converting into cylindrical coordinates
integrandCylindrical=Simplify[ρ*integrand/.{xρ*Cos[ϕ],yρ*Sin[ϕ]}]
Out[]=
ρ-(1+κ)-+6-(+κ)
-1+z
3/2
(1-2z++)
2
z
2
ρ
1+z
3/2
(1+2z++)
2
z
2
ρ
2
ρ
-1+z
5/2
(1-2z++)
2
z
2
ρ
1+z
5/2
(1+2z++)
2
z
2
ρ
2
Cos[ϕ]
2
Sin[ϕ]
1-2z++
2
z
2
ρ
Integrating over the angle
In[]:=
integrandRhoZ=Integrate[integrandCylindrical,{ϕ,0,2Pi}]
Out[]=
ρ6π(1+κ)--2π(1+κ)-
2
ρ
-1+z
5/2
(+)
2
(-1+z)
2
ρ
1+z
5/2
(+)
2
(1+z)
2
ρ
-1+z
3/2
(+)
2
(-1+z)
2
ρ
1+z
3/2
(+)
2
(1+z)
2
ρ
1-2z++
2
z
2
ρ
Now integrate over the whole planar radii to get the integrand over z
In[]:=
integrandZ=Simplify[Integrate[integrandRhoZ,{ρ,0,Infinity},AssumptionsElement[z,Reals]]]
Out[]=
(π(1+κ)(-(1+)+(1-3z+(4+(-3+z)z))))(4)
3
(1+z)
2
z
3
Abs[-1+z]
3
z
3
Abs[1+z]
2
(-1+z)
2
z
3
Abs[1+z]
This function has a singularity at z=1. Let's plot it too see how it behaves
In[]:=
Plot[integrandZ/.κ1,{z,-2,2}]
Out[]=
Let's first get the negative part of the integral
In[]:=
integralNegativeDomain=Simplify[Integrate[integrandZ,{z,0,-Infinity}]]
Out[]=
1
4
Now let's remove the singularity by introducing a small number ε>0
In[]:=
integralPositiveDomainForEpsilon=FullSimplify[Integrate[integrandZ,{z,0,1-ϵ},Assumptions{0<ϵ<1/2}]+Integrate[integrandZ,{z,1+ϵ,Infinity},Assumptions{0<ϵ<1/2}],Assumptions{0<ϵ<1/2}]
Out[]=
1
4
2
ϵ
1
1+ϵ
1
ϵ
Now let's approximate this for small ε by expanding to a series and neglecting the higher order terms
In[]:=
integralPositiveDomain=Simplify[Normal[Series[integralPositiveDomainForEpsilon,{ϵ,0,1}]],Assumptions{0<ϵ<1/2}]
Out[]=
1
4
The total integral is
In[]:=
integralTotal=integralPositiveDomain+integralNegativeDomain
Out[]=
1
2