Geology project list
Geology project list
Computational Structural Geology
Computational Structural Geology
Deformation in 2D and 3D
Deformation in 2D and 3D
An opportunity for students to create their own deformations, visualising affine and non-affine, isochoric and non-isochoric transformations in 2D and 3D with various sliders, coupled with the full 3D result, which would be the geological structure observed in the field.
Goals (deliverables)
Goals (deliverables)
◼
Interactive software for exploring
◼
undeformed and deformed states for any user-chosen affine and/or non-affine transformation
◼
the various deformation and strain tensors associated with any user-chosen deformation gradient F
◼
deformation plus strain ellipses for any user-chosen deformation
◼
all the above and include volume changes
◼
eigenvectors in 2D and 3D
Resources
Resources
◼
Geometry: The Concept of Deformation. Chapter 2, Hobbs, B.E. and Ord, A., 2015. Structural Geology: The Mechanics of Deforming Metamorphic Rocks. Elsevier Inc., Netherlands. 665 pp.
Chapter 7 Nonlinear Dynamics
7.4 Linear Stability Analysis
7.4 Linear Stability Analysis
Table 7.1
Table 7.1
Stable node
Stable node
In[]:=
imagescale={Automatic,500,128};LineIntegralConvolutionPlot[{{-x,-0.5y},imagescale},{x,-10,10},{y,-10,10},VectorPoints10,VectorStyleRed,ColorFunction"BeachColors",LightingAngle0,LineIntegralConvolutionScale10,ImageSize{250,250}]
Stable focus
Stable focus
In[]:=
imagescale={Automatic,500,128};LineIntegralConvolutionPlot[{{-x-y,x-y},imagescale},{x,-10,10},{y,-10,10},VectorPoints10,VectorStyleRed,ColorFunction"BeachColors",LightingAngle0,LineIntegralConvolutionScale10,ImageSize{250,250}]
Out[]=
Unstable focus
Unstable focus
In[]:=
imagescale={Automatic,500,128};LineIntegralConvolutionPlot[{{x-y,x+y},imagescale},{x,-10,10},{y,-10,10},VectorPoints10,VectorStyleRed,ColorFunction"BeachColors",LightingAngle0,LineIntegralConvolutionScale10,ImageSize{250,250}]
Out[]=
Unstable node
Unstable node
In[]:=
imagescale={Automatic,500,128};LineIntegralConvolutionPlot[{{x,0.5y},imagescale},{x,-10,10},{y,-10,10},VectorPoints10,VectorStyleRed,ColorFunction"BeachColors",LightingAngle0,LineIntegralConvolutionScale10,ImageSize{250,250}]
Out[]=
Saddle point
Saddle point
In[]:=
imagescale={Automatic,500,128};LineIntegralConvolutionPlot[{{x,-y},imagescale},{x,-10,10},{y,-10,10},VectorPoints10,VectorStyleRed,ColorFunction"BeachColors",LightingAngle0,LineIntegralConvolutionScale10,ImageSize{250,250}]
Out[]=
Hopf bifurcation
Hopf bifurcation
In[]:=
mum=0.1;
In[]:=
imagescale={Automatic,500,128};
In[]:=
licplot=LineIntegralConvolutionPlot[{{y+mumx-xy^2,mumy-x-y^3},imagescale},{x,-1,1},{y,-1,1},VectorPoints10,VectorStyleRed,ColorFunction"BeachColors",LightingAngle0,LineIntegralConvolutionScale10,ImageSize{250,250}]
Out[]=
7.6 Bifurcations
7.6 Bifurcations
References
References
Lynch 2007