TheLaplacetransformanalogytotheCMRB
Given the following expression.
In[]:=
ReImPlot[(-1),{x,-1,1}]
x
(-1)
1/x
x
Out[]=
Consider the term
f[x_]=(-1);
x
(-1)
1/x
x
of the MRB constant
In[]:=
CMRB=f[x];
∞
∑
x=1
In[]:=
N[CMRB]
Out[]=
0.18786
In the above replies we investigated
M1=(-1)x
∞
∫
1
x
(-1)
1/x
x
M2=(-1)x
∞
∫
1
x
(-1)
1/x
x
Out[]=
∞
∫
1
x
(-1)
1
x
x
In[]:=
Quiet[N[M1]]
Out[]=
0.0707768-0.047384
WhataboutthefollowingLaplacetransformanalogy,M0,totheCMRB,M0=([-1](s)/.s-π)=(-1)x=Exp[IPi](-1)x?
ℒ
x
1/x
x
t
-
0
∞
∫
t
x
(-1)
1/x
x
t
-
0
∞
∫
t
1/x
x
In[]:=
Needs["NumericalCalculus`"];M0=Quiet[NLimit[Integrate[f[x],{x,t,Infinity}],t->0,Direction-1]]
Out[]=
-0.168485-0.484112
Thusly, we are inquiring about
In[]:=
M0=[-1](s)/.s-π;
ℒ
x
1/x
x
In[]:=
M0a=N[LaplaceTransform[(-1),x,s]/.s->-IPi]
1/x
x
Out[]=
-0.168483-0.484114
In[]:=
Mn=Quiet[NLimit[NIntegrate[f[x],{x,t,1}],t->0,Direction-1]]
Out[]=
-0.239261-0.436734
Mn=f(x)x
lim
t
+
0
1
∫
t
1
∫
t
Then it makes perfect sense that ( )--=0.
M0=[-1](s)/.s-π
ℒ
x
1/x
x
Mn=f(x)x
lim
t
+
0
1
∫
t
M2=(-1)x
∞
∫
1
x
(-1)
1/x
x
Rationalize[N[M0-Mn-M2],]
-5
10
Out[]=
0