f(t_)=;TheMRBconstant=m=Imt
1
1+t
(1+t)
∞
∫
0
f(t)
sinh(πt)
(*Overthespecifiedrange,*)-+t-=4.71902*
t
π
Im
f(t)
sinh(πt)
Re
f(t)
sinh(πt)
-2
(10Log[6])
-7
10
In[]:=
f[t_]=(1+It)^(1/(1+It));
In[]:=
m=NIntegrate[Im[f[t]/Sinh[Pit]],{t,0,Infinity},WorkingPrecision->18]
Out[]=
0.187859642462067159
In[]:=
b=t/.FindRoot[E/Pit==Im[f[t]/Sinh[Pit]]/Re[f[t]/Sinh[Pit]],{t,1,Pi},WorkingPrecision->30](*(0,b)isthespecifiedrangeoftheaboveandfollowingintegral.*)
Out[]=
0.306741782076160452661440435549
In[]:=
int=NIntegrate[-E/Pit+Im[f[t]/Sinh[Pit]]/Re[f[t]/Sinh[Pit]],{t,0,b}]
Out[]=
0.00311535
In[]:=
d=;d//N
-2
(10Log[6])
Out[]=
0.00311487
In[]:=
int-d
Out[]=
4.71902×
-7
10
In[]:=
m-+-d
21
20
π
Out[]=
7.47179637988×
-7
10
In[]:=
5647
100E*m
4
10
∑
i=1
p
i
Out[]=
-9.68652×
-12
10
In[]:=
1E*m
4
10
∑
i=1
p
i
Out[]=
1
119667031
In[]:=
5647
100.
Out[]=
4.71893×
-7
10
In[]:=
-int+d
Out[]=
-4.71902×
-7
10
In[]:=
N1-E*m,20
1
4
10
∑
i=1
p
i
Out[]=
0.99999999164347948099
In[]:=
m--AGM1,
E
Pi
7
5
2
Out[]=
0.999999991659631162
Using them, we find the following equations.
TheMRBconstant=m=isthei'thprime.
∞
∑
n=1
n
(-1)
n
n
-1..mshort==1256012054
∑
n=1
n
(-1)
n
n
-1p
i
m-1+-=1.1560898070373*
π
-2
10
m
-4
10
m-1--AGM[1,
π
7
5
2
]==-8.3403688765*-9
10
mshort-1--AGM[1,
m-mshort==-8.3403688691
π
7
5
2
]==-7.4188344824*-18
10
-9
10
m-mshort+Em==1.6151649871*
1
4
10
∑
i=1
p
i
-11
10
While
1/5>m>1/6
,
Absm-mshort+Em
1
4
10
∑
i=1
p
i
<
Absm-mshort+E*1/5
1
4
10
∑
i=1
p
i
<
Absm-mshort+E*1/6
1
4
10
∑
i=1
p
i
.
In[]:=
m=NSum[(-1),{n,1,Infinity},Method->"AlternatingSigns",WorkingPrecision->60];
n
(-1)
1/n
n
In[]:=
mshort=NSum[(-1),{n,1,1256012054},Method->"AlternatingSigns",WorkingPrecision->60];
n
(-1)
1/n
n
In[]:=
AGM=ArithmeticGeometricMean;
In[]:=
m-1+-
π
-2
10
m
Out[]=
-0.0001156089807037326228944352013174373056636658505409583881
In[]:=
m-1-
π
AGM[1,
2
]7
5
Out[]=
-6.96109573383447332705750332585149672785921117178085×
-9
10
In[]:=
m-1--AGM[1,
π
7
5
2
]Out[]=
-8.3403688765533653663993629578547438005064645888310×
-9
10
In[]:=
mshort-1--AGM[1,
π
7
5
2
]Out[]=
-7.4188344824006461094669008007315074532082×
-18
10
In[]:=
N[m-mshort,20]
Out[]=
-8.3403688691345308840×
-9
10
In[]:=
1/5>m>1/6
Out[]=
True
In[]:=
Absm-mshort+E*m<Absm-mshort+E*1/5<Absm-mshort+E*1/6
1
4
10
∑
i=1
p
i
1
4
10
∑
i=1
p
i
1
4
10
∑
i=1
p
i
Out[]=
True
From the above equation,
we have