How_I _found _A157852 _sum.nb
Mission: integrate the terms of the Taylor series and find a pattern for their sum.
In[]:=
l2=Normal[Series[Exp[IPix](x^(1/x)-1),{x,Infinity,3}]];
Integrate[l2,{x,1,InfinityI}]
Out[]=
MeijerG[{{},{1,1}},{{0,0,0},{}},-π]-πMeijerG[{{},{1,1,1}},{{-1,0,0,0},{}},-π]-MeijerG[{{},{1,1,1,1}},{{-2,0,0,0,0},{}},-π]
2
π
NIntegrate[Normal[Series[Exp[IPix](x^(1/x)-1),{x,Infinity,1}]],{x,1,InfinityI}]
Out[]=
0.0576249-0.0466908
NIntegrate[Normal[Series[Exp[IPix](x^(1/x)-1),{x,Infinity,3}]],{x,1,InfinityI}]
l2
Out[]=
πx
Log[x]
x
2
Log[x]
2
2
x
3
Log[x]
6
3
x
Integrate[l2,{x,1,InfinityI}]
Out[]=
MeijerG[{{},{1,1}},{{0,0,0},{}},-π]-πMeijerG[{{},{1,1,1}},{{-1,0,0,0},{}},-π]-MeijerG[{{},{1,1,1,1}},{{-2,0,0,0,0},{}},-π]
2
π
The above is the pattern for the sum. What does it look like?
In[]:=
l2=Normal[Series[Exp[IPix](x^(1/x)-1),{x,Infinity,3}]];
The following are the same!
∞
∫
1
1/x
x
∞
∫
1
1/x
x
FullSimplify[N[NIntegrate[Exp[IPix](x^(1/x)-1),{x,1,Infinity},WorkingPrecision160,MaxRecursion300],60]-NIntegrate[Exp[IPix](x^(1/x)-1),{x,1,InfinityI},WorkingPrecision60]]
Out[]=
0.×+0.×
-61
10
-61
10
NIntegrate[l2,{x,1,Infinity}]-NIntegrate[l2,{x,1,InfinityI}]
Out[]=
-1.04802×-1.62902×
-11
10
-9
10
l2
Out[]=
πx
Log[x]
x
2
Log[x]
2
2
x
3
Log[x]
6
3
x
Integrate[l2,{x,1,Infinity}]
Out[]=
1
3840
4
EulerGamma
2
π
6
π
3
EulerGamma
2
π
5
π
4
π
5
2
2
π
4
2
Log[π]
1
2
1
2
1
2
1
2
1
2
1
2
1
2
2
π
4
2
Log[π]
2
EulerGamma
4
π
3
π
2
π
2
Log[π]
1
2
1
2
3
2
3
2
3
2
2
π
4
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
3
2
2
π
4
2
Log[π]
3
Log[π]
3
π
5
2
2
π
4
2
Log[π]
3
Log[π]
2
π
3
2
2
π
4
2
Log[π]
3
Log[π]
4
Log[π]
5
π
4
π
2
Log[π]
3
π
2
Log[π]
2
π
2
Log[π]
3
Log[π]
That is too messy!
In[]:=
l2=Normal[Series[Exp[IPix](x^(1/x)-1),{x,Infinity,6}]];
l3=NIntegrate[l2,{x,1,InfinityI}]
Out[]=
0.070776-0.0473807
l2
Out[]=
πx
Log[x]
x
2
Log[x]
2
2
x
3
Log[x]
6
3
x
4
Log[x]
24
4
x
5
Log[x]
120
5
x
6
Log[x]
720
6
x
Integrate[l2,{x,1,InfinityI}]
Out[]=
MeijerG[{{},{1,1}},{{0,0,0},{}},-π]-πMeijerG[{{},{1,1,1}},{{-1,0,0,0},{}},-π]-MeijerG[{{},{1,1,1,1}},{{-2,0,0,0,0},{}},-π]+MeijerG[{{},{1,1,1,1,1}},{{-3,0,0,0,0,0},{}},-π]+MeijerG[{{},{1,1,1,1,1,1}},{{-4,0,0,0,0,0,0},{}},-π]-MeijerG[{{},{1,1,1,1,1,1,1}},{{-5,0,0,0,0,0,0,0},{}},-π]
2
π
3
π
4
π
5
π
Above is more of the pattern.
Normal[Series[Exp[IPix](x^(1/x)-1),{x,Infinity,6}]]
Out[]=
πx
Log[x]
x
2
Log[x]
2
2
x
3
Log[x]
6
3
x
4
Log[x]
24
4
x
5
Log[x]
120
5
x
6
Log[x]
720
6
x
Normal[Series[Exp[IPix](Log[x]/x-1),{x,Infinity,6}]]
Out[]=
πx
Log[x]
x
l2=Normal[Series[Exp[IPix](x^(1/x)-1)/x!,{x,Infinity,3}]]
Out[]=
x(-+π+Log[x])
Log[x]
2π
3/2
x
-Log[x]+6
2
Log[x]
12
2π
5/2
x
Log[x]-12+48
2
Log[x]
3
Log[x]
288
2π
7/2
x
NIntegrate[l2,{x,1,InfinityI},WorkingPrecision100]
-77
10
Out[]=
0.05097929689537867126694461057376514891503278706430720899761197636759362876460307200788838682992586137-0.06819648032766032490867528421242372074940951421890844643168617781234681286045925787027565570763854972
M2-%
Out[]=
0.0197967424161501322725834112565168524507219091390558185855608117960248284997789645729434944362513768+0.0208158632573095388014658777098200421762566145257348070997251769097809452723887600797710325599294149
Integrate[l2,{x,1,Infinity}]
Out[]=
$Aborted
In[]:=
Integrate[l2,{x,1,InfinityI}]
Sum[Log[x]^n/(n!x),{n,1,Infinity}]
Out[]=
-1+x
x
l2=Normal[Series[Exp[IPix](x^(1/x)-1)/(x-1)!,{x,Infinity,3}]]
Out[]=
x(-+π+Log[x])
Log[x]
2π
x
-Log[x]+6
2
Log[x]
12
2π
3/2
x
Log[x]-12+48
2
Log[x]
3
Log[x]
288
2π
5/2
x
The following took several hours .