50, 000 Digits in 107.3792794 seconds
In[]:=
Needs["SubKernels`LocalKernels`"];Needs["SubKernels`RemoteKernels`"];Block[{$mathkernel=$mathkernel<>" -threadpriority=2"},LaunchKernels[]]
Out[]=
{KernelObject[1,local],KernelObject[2,local],KernelObject[3,local],KernelObject[4,local],KernelObject[5,local],KernelObject[6,local],KernelObject[7,local],KernelObject[8,local],KernelObject[9,local],KernelObject[10,local],KernelObject[11,local],KernelObject[12,local],KernelObject[13,local],KernelObject[14,local],KernelObject[15,local],KernelObject[16,local],KernelObject[17,192.168.1.239],KernelObject[18,192.168.1.239],KernelObject[20,192.168.1.239],KernelObject[21,192.168.1.239],KernelObject[23,192.168.1.239],KernelObject[24,192.168.1.239],KernelObject[25,192.168.1.239],KernelObject[26,192.168.1.239],KernelObject[29,192.168.1.239],KernelObject[30,192.168.1.239],KernelObject[31,192.168.1.239],KernelObject[32,192.168.1.239],$Failed}
In[]:=
Print["Start time is ",ds=DateString[],"."];prec=50000;(**Numberofrequireddecimals.*.*)ClearSystemCache[];T0=SessionTime[];expM[pre_]:=Module[{x11,z,t,a,d,s,k,bb,c,end,iprec,xvals,x,pc,cores=100(*=4*numberofphysicalcores*),tsize=75,chunksize,start=1,ll,ctab,pr=Floor[1.005pre]},chunksize=cores*tsize;n=Floor[1.32pr];end=Ceiling[n/chunksize];Print["Iterations required: ",n];Print["Will give ",end," time estimates, each more accurate than the previous."];Print["Will stop at ",end*chunksize," iterations to ensure precsion of around ",pr," decimal places."];d=ChebyshevT[n,3];{b,c,s}={SetPrecision[-1,1.1*n],-d,0};iprec=pr/16;Do[xvals=Flatten[ParallelTable[Table[ll=start+j*tsize+l;x=N[E^(Log[ll]/(ll)),iprec];pc=iprec;While[pc<pr,pc=Min[4pc,pr];x=SetPrecision[x,pc];xll=Power[x,ll];z=(ll-xll)/xll;t=2ll-1;t2=t^2;x*=(1+SetPrecision[4.5,pc](ll-1)/t2+(ll+1)z/(2llt)-SetPrecision[13.5,pc]ll(ll-1)/(3llt2+t^3z))];(**N[Exp[Log[ll]/ll],pr]**)x,{l,0,tsize-1}],{j,0,cores-1},Method"FinestGrained"]];ctab=ParallelTable[Table[c=b-c;ll=start+l-2;b*=2(ll+n)(ll-n)/((ll+1)(2ll+1));c,{l,chunksize}],Method"Automatic"];s+=ctab.(xvals-1);start+=chunksize;st=SessionTime[]-T0;kc=k*chunksize;ti=(st)/(kc+10^-4)*(n)/(3600)/(24);If[kc>1,Print["As of ",DateString[]," there were ",kc," iterations done in ",N[st,5]," seconds. That is ",N[kc/st,5]," iterations/s. ",N[kc/(end*chunksize)*100,7],"% complete."," It should take ",N[ti,6]," days or ",N[ti*24*3600,4],"s, and finish ",DatePlus[ds,ti],"."]];Print[];,{k,0,end-1}];N[-s/d,pr]];t2=Timing[MRB1=expM[prec];];Print["Finished on ",DateString[],". Proccessor and actual time were ",t2[[1]]," and ",SessionTime[]-T0," s. respectively"];Print["Enter MRB1 to print ",Floor[Precision[MRB1]]," digits. The error from a 6,500,000 or more digit calculation that used a different method is "];N[m3M-MRB1,20]
Start time is Mon 15 Apr 2024 16:19:45.
Iterations required: 66328
Will give 9 time estimates, each more accurate than the previous.
Will stop at 67500 iterations to ensure precsion of around 50249 decimal places.
As of Mon 15 Apr 2024 16:20:09 there were 7500 iterations done in 24.482 seconds. That is 306.35 iterations/s. 11.11111% complete. It should take 0.00250591 days or 216.5s, and finish Mon 15 Apr 2024 16:23:21.
As of Mon 15 Apr 2024 16:20:22 there were 15000 iterations done in 36.652 seconds. That is 409.25 iterations/s. 22.22222% complete. It should take 0.00187583 days or 162.1s, and finish Mon 15 Apr 2024 16:22:27.
As of Mon 15 Apr 2024 16:20:34 there were 22500 iterations done in 48.682 seconds. That is 462.18 iterations/s. 33.33333% complete. It should take 0.00166101 days or 143.5s, and finish Mon 15 Apr 2024 16:22:08.
100, 000 Digits in 639.5139758 seconds
300, 000 Digits in 7294.716363 seconds
1,000, 000 Digits in 113596.027370 seconds