
Constructions
A Euclidean construction consists of starting with a set of givens, such as segment AB, then adds arcs or circles with a compass and lines or segments with a straightedge. For example, two circles of radius AB centered on A and B can find an equidistant point C. Then segments AC and BC can be drawn for an equilateral triangle construction.
-
Euclid Book 1 Proposition 1
-
Euclid Book 1 Proposition 2
-
Euclid Book 1 Proposition 3
-
Euclid Book 1 Proposition 9
-
Euclid Book 1 Proposition 10
-
Euclid Book 1 Proposition 11
-
Euclid Book 1 Proposition 12
-
Euclid Book 1 Proposition 22
-
Euclid Book 1 Proposition 23
-
Euclid Book 1 Proposition 31
-
Euclid Book 1 Proposition 42
-
Euclid Book 1 Proposition 44
-
Euclid Book 1 Proposition 45
-
Euclid Book 1 Proposition 46
-
Euclid Book 2 Proposition 11
-
Euclid Book 2 Proposition 14
-
Euclid Book 3 Proposition 1
-
Euclid Book 3 Proposition 17
-
Euclid Book 3 Proposition 33
-
Euclid Book 3 Proposition 34
-
Euclid Book 4 Proposition 1
-
Euclid Book 4 Proposition 2
-
Euclid Book 4 Proposition 3
-
Euclid Book 4 Proposition 4
-
Euclid Book 4 Proposition 5
-
Euclid Book 4 Proposition 6
-
Euclid Book 4 Proposition 7
-
Euclid Book 4 Proposition 8
-
Euclid Book 4 Proposition 9
-
Euclid Book 4 Proposition 10
-
Euclid Book 4 Proposition 11
-
Euclid Book 4 Proposition 12
-
Euclid Book 4 Proposition 13
-
Euclid Book 4 Proposition 14
-
Euclid Book 4 Proposition 15
-
Euclid Book 6 Proposition 9
-
Euclid Book 6 Proposition 10
-
Euclid Book 6 Proposition 11
-
Euclid Book 6 Proposition 12
-
Euclid Book 6 Proposition 13
-
Euclid Book 6 Proposition 18
-
Euclid Book 6 Proposition 25
-
Euclid Book 6 Proposition 27
-
Euclid Book 6 Proposition 28
-
Euclid Book 6 Proposition 29
-
Euclid Book 6 Proposition 30