Euclid Book 6
Book 6 brings proportions of Book 5 to the geometry of books 1-4 to construct and recognize similar figures in a variety of ways. Proposition 3 is the angle bisector theorem. Proposition 5, sometimes known as AAA, proves that similar triangles (those with sides in proportion) have the same angles.
-
Euclid Book 6 Proposition 1a
-
Euclid Book 6 Proposition 1b
-
Euclid Book 6 Proposition 2a
-
Euclid Book 6 Proposition 2b
-
Euclid Book 6 Proposition 3a
-
Euclid Book 6 Proposition 3b
-
Euclid Book 6 Proposition 4
-
Euclid Book 6 Proposition 5
-
Euclid Book 6 Proposition 6
-
Euclid Book 6 Proposition 7a
-
Euclid Book 6 Proposition 7b
-
Euclid Book 6 Proposition 8
-
Euclid Book 6 Proposition 9
-
Euclid Book 6 Proposition 10
-
Euclid Book 6 Proposition 11
-
Euclid Book 6 Proposition 12
-
Euclid Book 6 Proposition 13
-
Euclid Book 6 Proposition 14a
-
Euclid Book 6 Proposition 14b
-
Euclid Book 6 Proposition 15a
-
Euclid Book 6 Proposition 15b
-
Euclid Book 6 Proposition 16a
-
Euclid Book 6 Proposition 16b
-
Euclid Book 6 Proposition 17a
-
Euclid Book 6 Proposition 17b
-
Euclid Book 6 Proposition 18
-
Euclid Book 6 Proposition 19
-
Euclid Book 6 Proposition 20
-
Euclid Book 6 Proposition 21
-
Euclid Book 6 Proposition 22a
-
Euclid Book 6 Proposition 22b
-
Euclid Book 6 Proposition 23
-
Euclid Book 6 Proposition 24
-
Euclid Book 6 Proposition 25
-
Euclid Book 6 Proposition 26
-
Euclid Book 6 Proposition 27
-
Euclid Book 6 Proposition 28
-
Euclid Book 6 Proposition 29
-
Euclid Book 6 Proposition 30
-
Euclid Book 6 Proposition 31
-
Euclid Book 6 Proposition 32