Under Development
A collection of classical geometry in computable formats along with code and diagrams.
Computable Euclid
›
Euclid Book 13
›
Browse books
Euclid Book 1
Euclid Book 2
Euclid Book 3
Euclid Book 4
Euclid Book 5
Euclid Book 6
Euclid Book 13
Euclid Book 13 Proposition 1
Statement
I
f
a
l
i
n
e
s
e
g
m
e
n
t
(
A
B
)
i
s
c
u
t
i
n
t
h
e
g
o
l
d
e
n
r
a
t
i
o
(
A
B
A
C
A
C
C
B
)
,
t
h
e
n
t
h
e
s
q
u
a
r
e
o
f
t
h
e
l
o
n
g
e
r
s
e
g
m
e
n
t
a
d
d
e
d
t
o
t
h
e
h
a
l
f
o
f
t
h
e
w
h
o
l
e
(
2
(
A
C
+
A
D
)
)
i
s
f
i
v
e
t
i
m
e
s
t
h
e
s
q
u
a
r
e
o
f
t
h
e
h
a
l
f
(
5
2
A
D
)
.
Computational Explanation
G
e
o
m
e
t
r
i
c
S
c
e
n
e
{
{
A
.
,
B
.
,
C
.
,
D
.
,
F
.
,
H
.
,
K
.
,
L
.
}
,
{
a
.
,
b
.
}
}
,
L
i
n
e
[
{
A
.
,
C
.
,
B
.
}
]
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
C
.
]
a
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
B
.
]
b
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
C
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
C
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
B
.
]
,
L
i
n
e
[
{
C
.
,
A
.
,
D
.
}
]
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
D
.
]
1
2
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
a
.
+
b
.
2
,
G
e
o
m
e
t
r
i
c
A
s
s
e
r
t
i
o
n
[
{
P
o
l
y
g
o
n
[
{
D
.
,
C
.
,
F
.
,
L
.
}
]
,
P
o
l
y
g
o
n
[
{
D
.
,
A
.
,
H
.
,
K
.
}
]
}
,
"
R
e
g
u
l
a
r
"
]
,
A
r
e
a
[
P
o
l
y
g
o
n
[
{
D
.
,
C
.
,
F
.
,
L
.
}
]
]
5
A
r
e
a
[
P
o
l
y
g
o
n
[
{
D
.
,
A
.
,
H
.
,
K
.
}
]
]
,
2
(
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
C
.
]
+
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
D
.
]
)
5
2
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
D
.
]
,
2
a
.
+
a
.
+
b
.
2
5
2
a
.
+
b
.
2
A
r
e
a
[
P
o
l
y
g
o
n
[
{
D
.
,
C
.
,
F
.
,
L
.
}
]
]
5
A
r
e
a
[
P
o
l
y
g
o
n
[
{
D
.
,
A
.
,
H
.
,
K
.
}
]
]
Explanations
For let the straight line
A
B
be cut in extreme and mean ratio at the point
C
, and let
A
C
be the greater segment; let the straight line
A
D
be produced in a straight line with
C
A
, and let
A
D
be made half of
A
B
; I say that the square on
C
D
is five times the square on
A
D
.
For let the squares
A
E
,
D
F
be described on
A
B
,
D
C
, and let the figure in
D
F
be drawn; let
F
C
be carried through to
G
.
Now, since
A
B
has been cut in extreme and mean ratio at
C
, therefore the rectangle
A
B
,
B
C
is equal to the square on
A
C
.
[
V
I
.
D
e
f
.
3
]
[
V
I
.
1
7
]
And
C
E
is the rectangle
A
B
,
B
C
, and
F
H
the square on
A
C
; therefore
C
E
is equal to
F
H
.
And, since
B
A
is double of
A
D
, while
B
A
is equal to
K
A
, and
A
D
to
A
H
, therefore
K
A
is also double of
A
H
.
But, as
K
A
is to
A
H
, so is
C
K
to
C
H
;
[
V
I
.
1
]
therefore
C
K
is double of
C
H
. But
L
H
,
H
C
are also double of
C
H
.
Therefore
K
C
is equal to
L
H
,
H
C
.
But
C
E
was also proved equal to
H
F
; therefore the whole square
A
E
is equal to the gnomon
M
N
O
.
And, since
B
A
is double of
A
D
, the square on
B
A
is quadruple of the square on
A
D
, that is,
A
E
is quadruple of
D
H
.
But
A
E
is equal to the gnomon
M
N
O
; therefore the gnomon
M
N
O
is also quadruple of
A
P
; therefore the whole
D
F
is five times
A
P
.
And
D
F
is the square on
D
C
, and
A
P
the square on
D
A
; therefore the square on
C
D
is five times the square on
D
A
.
Classes
Euclid's Elements
Theorems
Geometric Algebra
EuclidBook13
Related Theorems
EuclidBook13Proposition2
EuclidBook13Proposition3
EuclidBook13Proposition4
EuclidBook13Proposition5