Under Development
A collection of classical geometry in computable formats along with code and diagrams.
Computable Euclid
›
Euclid Book 13
›
Browse books
Euclid Book 1
Euclid Book 2
Euclid Book 3
Euclid Book 4
Euclid Book 5
Euclid Book 6
Euclid Book 13
Euclid Book 13 Proposition 2
Statement
I
f
t
h
e
s
q
u
a
r
e
o
f
a
l
i
n
e
s
e
g
m
e
n
t
(
2
C
D
)
i
s
f
i
v
e
t
i
m
e
s
t
h
e
s
q
u
a
r
e
o
f
a
s
h
o
r
t
e
r
s
e
g
m
e
n
t
(
5
2
A
D
)
i
n
i
t
,
t
h
e
n
,
w
h
e
n
t
h
e
d
o
u
b
l
e
(
A
B
)
o
f
t
h
e
s
h
o
r
t
e
r
s
e
g
m
e
n
t
i
s
c
u
t
i
n
t
h
e
g
o
l
d
e
n
r
a
t
i
o
,
t
h
e
l
o
n
g
e
r
s
e
g
m
e
n
t
(
A
C
)
i
s
t
h
e
r
e
m
a
i
n
i
n
g
p
a
r
t
o
f
t
h
e
o
r
i
g
i
n
a
l
l
i
n
e
s
e
g
m
e
n
t
.
Computational Explanation
G
e
o
m
e
t
r
i
c
S
c
e
n
e
{
{
A
.
,
B
.
,
C
.
,
D
.
,
F
.
,
H
.
,
K
.
,
L
.
,
P
.
}
,
{
a
.
,
b
.
,
c
.
}
}
,
L
i
n
e
[
{
A
.
,
C
.
,
B
.
}
]
,
L
i
n
e
[
{
C
.
,
A
.
,
D
.
}
]
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
C
.
]
a
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
B
.
]
b
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
D
.
]
1
2
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
a
.
+
b
.
2
,
G
e
o
m
e
t
r
i
c
A
s
s
e
r
t
i
o
n
[
{
P
o
l
y
g
o
n
[
{
D
.
,
C
.
,
F
.
,
L
.
}
]
,
P
o
l
y
g
o
n
[
{
D
.
,
A
.
,
H
.
,
K
.
}
]
}
,
"
R
e
g
u
l
a
r
"
]
,
A
r
e
a
[
P
o
l
y
g
o
n
[
{
D
.
,
C
.
,
F
.
,
L
.
}
]
]
2
a
.
+
a
.
+
b
.
2
,
A
r
e
a
[
P
o
l
y
g
o
n
[
{
D
.
,
A
.
,
H
.
,
K
.
}
]
]
2
a
.
+
b
.
2
,
2
a
.
+
a
.
+
b
.
2
5
2
a
.
+
b
.
2
,
L
i
n
e
[
{
A
.
,
P
.
,
B
.
}
]
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
P
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
P
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
P
.
,
B
.
]
,
P
.
C
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
C
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
C
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
B
.
]
,
a
.
+
b
.
a
.
a
.
b
.
P
.
C
.
Explanations
For let the square on the straight line
A
B
be five times the square on the segment
A
C
of it, and let
C
D
be double of
A
C
; I say that, when
C
D
is cut in extreme and mean ratio, the greater segment is
C
B
.
Let the squares
A
F
,
C
G
be described on
A
B
,
C
D
respectively, let the figure in
A
F
be drawn, and let
B
E
be drawn through.
Now, since the square on
B
A
is five times the square on
A
C
,
A
F
is five times
A
H
. Therefore the gnomon
M
N
O
is quadruple of
A
H
.
And, since
D
C
is double of
C
A
, therefore the square on
D
C
is quadruple of the square on
C
A
, that is,
C
G
is quadruple of
A
H
.
But the gnomon
M
N
O
was also proved quadruple of
A
H
; therefore the gnomon
M
N
O
is equal to
C
G
.
And, since
D
C
is double of
C
A
, while
D
C
is equal to
C
K
, and
A
C
to
C
H
, therefore
K
B
is also double of
B
H
.
[
V
I
.
1
]
But
L
H
,
H
B
are also double of
H
B
; therefore
K
B
is equal to
L
H
,
H
B
.
But the whole gnomon
M
N
O
was also proved equal to the whole
C
G
; therefore the remainder
H
F
is equal to
B
G
.
And
B
G
is the rectangle
C
D
,
D
B
, for
C
D
is equal to
D
G
; and
H
F
is the square on
C
B
; therefore the rectangle
C
D
,
D
B
is equal to the square on
C
B
.
Therefore, as
D
C
is to
C
B
, so is
C
B
to
B
D
. But
D
C
is greater than
C
B
; therefore
C
B
is also greater than
B
D
. Therefore, when the straight line
C
D
is cut in extreme and mean ratio,
C
B
is the greater segment.
Classes
Euclid's Elements
Theorems
Geometric Algebra
EuclidBook13
Related Theorems
EuclidBook13Proposition1
EuclidBook13Proposition3
EuclidBook13Proposition4
EuclidBook13Proposition5