Under Development
A collection of classical geometry in computable formats along with code and diagrams.
Computable Euclid
›
Euclid Book 13
›
Browse books
Euclid Book 1
Euclid Book 2
Euclid Book 3
Euclid Book 4
Euclid Book 5
Euclid Book 6
Euclid Book 13
Euclid Book 13 Proposition 3
Statement
I
f
a
l
i
n
e
s
e
g
m
e
n
t
(
A
B
)
i
s
c
u
t
i
n
t
h
e
g
o
l
d
e
n
r
a
t
i
o
(
A
B
A
C
A
C
C
B
)
,
t
h
e
n
t
h
e
s
q
u
a
r
e
o
f
t
h
e
s
u
m
o
f
t
h
e
s
h
o
r
t
e
r
s
e
g
m
e
n
t
a
n
d
t
h
e
h
a
l
f
o
f
t
h
e
l
o
n
g
e
r
s
e
g
m
e
n
t
(
2
(
B
C
+
C
D
)
)
i
s
f
i
v
e
t
i
m
e
s
t
h
e
s
q
u
a
r
e
o
f
t
h
e
h
a
l
f
(
5
2
A
D
)
o
f
t
h
e
l
o
n
g
e
r
s
e
g
m
e
n
t
.
Computational Explanation
G
e
o
m
e
t
r
i
c
S
c
e
n
e
{
{
A
.
,
B
.
,
C
.
,
D
.
,
E
.
,
F
.
,
H
.
,
K
.
,
L
.
,
M
.
}
,
{
a
.
,
b
.
}
}
,
L
i
n
e
[
{
A
.
,
D
.
,
C
.
,
B
.
}
]
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
C
.
]
a
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
B
.
]
b
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
C
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
C
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
B
.
]
,
D
.
M
i
d
p
o
i
n
t
[
L
i
n
e
[
{
A
.
,
C
.
}
]
]
,
L
i
n
e
[
{
{
A
.
,
H
.
,
F
.
}
,
{
F
.
,
L
.
,
E
.
}
,
{
L
.
,
K
.
,
D
.
}
,
{
H
.
,
K
.
,
M
.
}
,
{
B
.
,
M
.
,
E
.
}
}
]
,
G
e
o
m
e
t
r
i
c
A
s
s
e
r
t
i
o
n
[
{
P
o
l
y
g
o
n
[
{
A
.
,
B
.
,
E
.
,
F
.
}
]
,
S
t
y
l
e
[
P
o
l
y
g
o
n
[
{
H
.
,
K
.
,
L
.
,
F
.
}
]
,
P
i
n
k
]
}
,
"
R
e
g
u
l
a
r
"
]
,
S
t
y
l
e
[
P
o
l
y
g
o
n
[
{
B
.
,
D
.
,
K
.
,
M
.
}
]
,
B
l
u
e
]
,
A
r
e
a
[
P
o
l
y
g
o
n
[
{
B
.
,
D
.
,
K
.
,
M
.
}
]
]
5
A
r
e
a
[
P
o
l
y
g
o
n
[
{
H
.
,
K
.
,
L
.
,
F
.
}
]
]
,
2
(
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
B
.
,
C
.
]
+
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
D
.
]
)
5
2
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
D
.
]
,
2
b
.
+
a
.
2
5
2
a
.
2
A
r
e
a
[
P
o
l
y
g
o
n
[
{
B
.
,
D
.
,
K
.
,
M
.
}
]
]
5
A
r
e
a
[
P
o
l
y
g
o
n
[
{
H
.
,
K
.
,
L
.
,
F
.
}
]
]
Explanations
For let any straight line
A
B
be cut in extreme and mean ratio at the point
C
, let
A
C
be the greater segment, and let
A
C
be bisected at
D
; I say that the square on
B
D
is five times the square on
D
C
.
For let the square
A
E
be described on
A
B
, and let the figure be drawn double.
Since
A
C
is double of
D
C
, therefore the square on
A
C
is quadruple of the square on
D
C
, that is,
R
S
is quadruple of
F
G
.
And, since the rectangle
A
B
,
B
C
is equal to the square on
A
C
, and
C
E
is the rectangle
A
B
,
B
C
, therefore
C
E
is equal to
R
S
.
But
R
S
is quadruple of
F
G
; therefore
C
E
is also quadruple of
F
G
.
Again, since
A
D
is equal to
D
C
,
H
K
is also equal to
K
F
.
Hence the square
G
F
is also equal to the square
H
L
.
Therefore
G
K
is equal to
K
L
, that is,
M
N
to
N
E
; hence
M
F
is also equal to
F
E
.
But
M
F
is equal to
C
G
; therefore
C
G
is also equal to
F
E
.
Let
C
N
be added to each; therefore the gnomon
O
P
Q
is equal to
C
E
.
But
C
E
was proved quadruple of
G
F
; therefore the gnomon
O
P
Q
is also quadruple of the square
F
G
.
Therefore the gnomon
O
P
Q
and the square
F
G
are five times
F
G
.
But the gnomon
O
P
Q
and the square
F
G
are the square
D
N
.
And
D
N
is the square on
D
B
, and
G
F
the square on
D
C
.
Therefore the square on
D
B
is five times the square on
D
C
.
Classes
Euclid's Elements
Theorems
Geometric Algebra
EuclidBook13
Related Theorems
EuclidBook13Proposition1
EuclidBook13Proposition2
EuclidBook13Proposition4
EuclidBook13Proposition5