Under Development
A collection of classical geometry in computable formats along with code and diagrams.
Computable Euclid
›
Euclid Book 13
›
Browse books
Euclid Book 1
Euclid Book 2
Euclid Book 3
Euclid Book 4
Euclid Book 5
Euclid Book 6
Euclid Book 13
Euclid Book 13 Proposition 4
Statement
I
f
a
l
i
n
e
s
e
g
m
e
n
t
(
A
B
)
i
s
c
u
t
i
n
t
h
e
g
o
l
d
e
n
r
a
t
i
o
(
A
B
A
C
A
C
C
B
)
,
t
h
e
n
t
h
e
s
u
m
o
f
t
h
e
s
q
u
a
r
e
s
o
f
t
h
e
w
h
o
l
e
a
n
d
o
f
t
h
e
s
h
o
r
t
e
r
s
e
g
m
e
n
t
(
2
A
B
+
2
B
C
)
i
s
t
r
i
p
l
e
t
h
e
s
q
u
a
r
e
o
f
t
h
e
l
o
n
g
e
r
s
e
g
m
e
n
t
(
3
2
A
C
)
.
Computational Explanation
G
e
o
m
e
t
r
i
c
S
c
e
n
e
{
{
A
.
,
B
.
,
C
.
,
D
.
,
E
.
,
F
.
,
G
.
,
H
.
,
K
.
}
,
{
a
.
,
b
.
}
}
,
L
i
n
e
[
{
A
.
,
C
.
,
B
.
}
]
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
C
.
]
a
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
B
.
]
b
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
C
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
C
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
B
.
]
,
L
i
n
e
[
{
{
A
.
,
H
.
,
D
.
}
,
{
D
.
,
G
.
,
E
.
}
,
{
E
.
,
K
.
,
B
.
}
,
{
H
.
,
F
.
,
K
.
}
,
{
C
.
,
F
.
,
G
.
}
}
]
,
G
e
o
m
e
t
r
i
c
A
s
s
e
r
t
i
o
n
[
{
P
o
l
y
g
o
n
[
{
A
.
,
B
.
,
E
.
,
D
.
}
]
,
S
t
y
l
e
[
P
o
l
y
g
o
n
[
{
C
.
,
B
.
,
K
.
,
F
.
}
]
,
P
i
n
k
]
}
,
"
R
e
g
u
l
a
r
"
]
,
S
t
y
l
e
[
P
o
l
y
g
o
n
[
{
D
.
,
H
.
,
F
.
,
G
.
}
]
,
B
l
u
e
]
,
A
r
e
a
[
P
o
l
y
g
o
n
[
{
A
.
,
B
.
,
E
.
,
D
.
}
]
]
+
A
r
e
a
[
P
o
l
y
g
o
n
[
{
C
.
,
B
.
,
K
.
,
F
.
}
]
]
3
A
r
e
a
[
P
o
l
y
g
o
n
[
{
D
.
,
H
.
,
F
.
,
G
.
}
]
]
,
2
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
+
2
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
B
.
,
C
.
]
3
2
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
C
.
]
,
2
(
a
.
+
b
.
)
+
2
b
.
3
2
a
.
A
r
e
a
[
P
o
l
y
g
o
n
[
{
A
.
,
B
.
,
E
.
,
D
.
}
]
]
+
A
r
e
a
[
P
o
l
y
g
o
n
[
{
C
.
,
B
.
,
K
.
,
F
.
}
]
]
3
A
r
e
a
[
P
o
l
y
g
o
n
[
{
D
.
,
H
.
,
F
.
,
G
.
}
]
]
Explanations
Let
A
B
be a straight line, let it be cut in extreme and mean ratio at
C
, and let
A
C
be the greater segment; I say that the squares on
A
B
,
B
C
are triple of the square on
C
A
.
For let the square
A
D
E
B
be described on
A
B
, and let the figure be drawn.
Since then
A
B
has been cut in extreme and mean ratio at
C
, and
A
C
is the greater segment, therefore the rectangle
A
B
,
B
C
is equal to the square on
A
C
.
[
V
I
.
D
e
f
.
3
]
[
V
I
.
1
7
]
And
A
K
is the rectangle
A
B
,
B
C
, and
H
G
the square on
A
C
; therefore
A
K
is equal to
H
G
.
And, since
A
F
is equal to
F
E
, let
C
K
be added to each; therefore the whole
A
K
is equal to the whole
C
E
; therefore
A
K
,
C
E
are double of
A
K
.
But
A
K
,
C
E
are the gnomon
L
M
N
and the square
C
K
; therefore the gnomon
L
M
N
and the square
C
K
are double of
A
K
.
But, further,
A
K
was also proved equal to
H
G
; therefore the gnomon
L
M
N
and the squares
C
K
,
H
G
are triple of the square
H
G
.
And the gnomon
L
M
N
and the squares
C
K
,
H
G
are the whole square
A
E
and
C
K
, which are the squares on
A
B
,
B
C
, while
H
G
is the square on
A
C
.
Therefore the squares on
A
B
,
B
C
are triple of the square on
A
C
.
Classes
Euclid's Elements
Theorems
Geometric Algebra
EuclidBook13
Related Theorems
EuclidBook13Proposition1
EuclidBook13Proposition2
EuclidBook13Proposition3
EuclidBook13Proposition5