Proposition 13
Theorem
In any triangle △ABC , with ∠ACB < 90° and AD ⊥ BC at point D , it follows that |BC|2 + |CA|2 = |AB|2 + 2·|BC|·|DC| .
ἐν τοῖς ὀξυγωνίοις τριγώνοις τὸ ἀπὸ τῆς τὴν ὀξϵῖαν γωνίαν ὑποτϵινούσης πλϵυρᾶς τϵτράγωνον ἔλαττόν ἐστι τῶν ἀπὸ τῶν τὴν ὀξϵῖαν γωνίαν πϵριϵχουσῶν πλϵυρῶν τϵτραγώνων τῷ πϵριϵχομένῳ δὶς ὑπό τϵ μιᾶς τῶν πϵρὶ τὴν ὀξϵῖαν γωνίαν, ἐϕ᾽ ἣν ἡ κάθϵτος πίπτϵι, καὶ τῆς ἀπολαμβανομένης ἐντὸς ὑπὸ τῆς καθέτου πρὸς τῇ ὀξϵίᾳ γωνίᾳ.
In acute-angled triangles the square on the side subtending the acute angle is less than the squares on the sides containing the acute angle by twice the rectangle contained by one of the sides about the acute angle, namely that on which the perpendicular falls, and the straight line cut off within by the perpendicular towards the acute angle.