Proposition 4
Theorem
If a line AB is divided into two parts at point C, then ᅵABᅵ2 = ᅵACᅵ2 + ᅵCBᅵ2 + 2 ᅵACᅵ⋅ᅵCBᅵ .
ἐὰν ϵὐθϵῖα γραμμὴ τμηθῇ, ὡς ἔτυχϵν, τὸ ἀπὸ τῆς ὅλης τϵτράγωνον ἴσον ἐστὶ τοῖς τϵ ἀπὸ τῶν τμημάτων τϵτραγώνοις καὶ τῷ δὶς ὑπὸ τῶν τμημάτων πϵριϵχομένῳ ὀρθογωνίῳ.
If a straight line is cut at random, the square on the whole is equal to the squares on the segments and twice the rectangle contained by the segments.