Proposition 8
Theorem
If a line segment AB is divided into any two parts at point C, then 4 ᅵAB ᅵ⋅ᅵCB ᅵ + ᅵAC ᅵ2 = ᅵAB ᅵ + ᅵCB ᅵ2 .
ἐὰν ϵὐθϵῖα γραμμὴ τμηθῇ, ὡς ἔτυχϵν, τὸ τϵτράκις ὑπὸ τῆς ὅλης καὶ ἑνὸς τῶν τμημάτων πϵριϵχόμϵνον ὀρθογώνιον μϵτὰ τοῦ ἀπὸ τοῦ λοιποῦ τμήματος τϵτραγώνου ἴσον ἐστὶ τῷ ἀπό τϵ τῆς ὅλης καὶ τοῦ ϵἰρημένου τμήματος ὡς ἀπὸ μιᾶς ἀναγραϕέντι τϵτραγώνῳ.
If a straight line is cut at random, four times the rectangle contained by the whole and one of the segments together with the square on the remaining segment is equal to the square described on the whole and the aforesaid segment as on one straight line.