Basic Examples (4)
Basic Examples
(4)
Evaluate numerically:
In[69]:=
#[0.5]&/@,,,,,,,,,,,
Out[69]=
{0.122417,1.87758,0.938791,0.520574,1.47943,0.260287,0.260287,0.739713,0.739713,0.139494,1.08583,0.494808}
———
Arguments given in radians:
In[79]:=
#[Pi/3]&/@,,,,,,,,,,,
Out[79]=
,,,1-,1+,1-,1-,1+,1+,1,-1+,1
1
2
3
2
3
4
3
2
3
2
1
2
3
2
1
2
3
2
1
2
3
2
1
2
3
2
2
3
In[81]:=
#[1]&/@,,,,,,,,,,,
Out[81]=
,,0,0,0,-,-,,,,,
π
2
π
2
π
2
π
2
π
2
π
2
π
3
π
6
π
3
Multiply or divide by to specify an argument in degrees:
In[80]:=
#[60Degree]&/@,,,,,,,,,,,
Out[80]=
,,,1-,1+,1-,1-,1+,1+,1,-1+,1
1
2
3
2
3
4
3
2
3
2
1
2
3
2
1
2
3
2
1
2
3
2
1
2
3
2
2
3
In[88]:=
(FullSimplify[#[1]/Degree])&/@,,,,,,,,,,,
Out[88]=
{90,90,0,0,0,-90,-90,90,90,60,30,60}
———
Plot over a subset of the reals:
In[74]:=
Withlist1=,,,,Plot[Evaluate[#[x]&/@list1],{x,-2Pi,2Pi},PlotRange->{Automatic,{-0.5,2}},PlotLegends->list1,ImageSize->333],Withlist2=,,,Plot[Evaluate[#[x]&/@list2],{x,-2Pi,2Pi},PlotRange->{-10,10},PlotLegends->list2,ImageSize->333]
Out[74]=
,
In[75]:=
Withlist3=InverseHaversine,,,,Plot[Evaluate[#[x]&/@list3],{x,0,1},PlotLegends->list3,ImageSize->333],Withlist4=,,,PlotEvaluateIf#=!=,#[x],#[x+1]&/@list4,{x,-6,4},PlotLegends->list4,ImageSize->333
Out[75]=
,
———
Plot over a subset of the complexes:
In[76]:=
ComplexPlot3D[#[z],{z,-2π-2I,2π+2I},PlotLegends->None]&/@,,,,,
Out[76]=