WOLFRAM NOTEBOOK

Basic Examples 
(4)
 

Evaluate numerically:
In[69]:=
#[0.5]&/@
Versine
,
Vercosine
,
Havercosine
,
Coversine
,
Covercosine
,
Hacoversine
,
Cohaversine
,
Hacovercosine
,
Cohavercosine
,
Exsecant
,
Excosecant
,
Chord
Out[69]=
{0.122417,1.87758,0.938791,0.520574,1.47943,0.260287,0.260287,0.739713,0.739713,0.139494,1.08583,0.494808}
Arguments given in radians:
In[79]:=
#[Pi/3]&/@
Versine
,
Vercosine
,
Havercosine
,
Coversine
,
Covercosine
,
Hacoversine
,
Cohaversine
,
Hacovercosine
,
Cohavercosine
,
Exsecant
,
Excosecant
,
Chord
Out[79]=
1
2
,
3
2
,
3
4
,1-
3
2
,1+
3
2
,
1
2
1-
3
2
,
1
2
1-
3
2
,
1
2
1+
3
2
,
1
2
1+
3
2
,1,-1+
2
3
,1
In[81]:=
#[1]&/@
InverseVersine
,
InverseVercosine
,
InverseHavercosine
,
InverseCoversine
,
InverseCovercosine
,
InverseHacoversine
,
InverseCohaversine
,
InverseHacovercosine
,
InverseCohavercosine
,
InverseExsecant
,
InverseExcosecant
,
InverseChord
Out[81]=
π
2
,
π
2
,0,0,0,-
π
2
,-
π
2
,
π
2
,
π
2
,
π
3
,
π
6
,
π
3
Multiply or divide by
Degree
to specify an argument in degrees:
In[80]:=
#[60Degree]&/@
Versine
,
Vercosine
,
Havercosine
,
Coversine
,
Covercosine
,
Hacoversine
,
Cohaversine
,
Hacovercosine
,
Cohavercosine
,
Exsecant
,
Excosecant
,
Chord
Out[80]=
1
2
,
3
2
,
3
4
,1-
3
2
,1+
3
2
,
1
2
1-
3
2
,
1
2
1-
3
2
,
1
2
1+
3
2
,
1
2
1+
3
2
,1,-1+
2
3
,1
In[88]:=
(FullSimplify[#[1]/Degree])&/@
InverseVersine
,
InverseVercosine
,
InverseHavercosine
,
InverseCoversine
,
InverseCovercosine
,
InverseHacoversine
,
InverseCohaversine
,
InverseHacovercosine
,
InverseCohavercosine
,
InverseExsecant
,
InverseExcosecant
,
InverseChord
Out[88]=
{90,90,0,0,0,-90,-90,90,90,60,30,60}
Plot over a subset of the reals:
In[74]:=
Withlist1=
Versine
,
Vercosine
,
Coversine
,
Covercosine
,Plot[Evaluate[#[x]&/@list1],{x,-2Pi,2Pi},PlotRange->{Automatic,{-0.5,2}},PlotLegends->list1,ImageSize->333],Withlist2=
Exsecant
,
Excosecant
,
Chord
,Plot[Evaluate[#[x]&/@list2],{x,-2Pi,2Pi},PlotRange->{-10,10},PlotLegends->list2,ImageSize->333]
Out[74]=
Versine
Vercosine
Coversine
Covercosine
,
Exsecant
Excosecant
Chord
In[75]:=
Withlist3=InverseHaversine,
InverseHavercosine
,
InverseHacoversine
,
InverseHacovercosine
,Plot[Evaluate[#[x]&/@list3],{x,0,1},PlotLegends->list3,ImageSize->333],Withlist4=
InverseExsecant
,
InverseExcosecant
,
InverseChord
,PlotEvaluateIf#=!=
InverseChord
,#[x],#[x+1]&/@list4,{x,-6,4},PlotLegends->list4,ImageSize->333
Out[75]=
InverseHaversine
InverseHavercosine
InverseHacoversine
InverseHacovercosine
,
InverseExsecant
InverseExcosecant
InverseChord
Plot over a subset of the complexes:
In[76]:=
ComplexPlot3D[#[z],{z,-2π-2I,2π+2I},PlotLegends->None]&/@
Versine
,
Exsecant
,
Chord
,
InverseCoversine
,
InverseExcosecant
,
InverseChord
Out[76]=
Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.