WOLFRAM NOTEBOOK

(*Defineparameterswithextremeprecision*)R=10000000;S=36/1000;σ=15/1000000;(*15μC/m²toC/m²*)d=7353/100000000;(*73.53μmtom*)ε0=8854/1000000000000000;(*VacuumpermittivityF/m*)A0=5/1000;(*5mmtom*)f=32/10;(*FrequencyinHz*)w=2*π*f;(*Angularvelocityrad/s*)θ=3*π/2;(*Initialphaseangle*)input[v_]:=N[A0*Sin[(w*v)+θ]+A0];term1[j_]:=N
(σ*input[j])
(R*ε0)
,5000;term2[x_]:=N
(d+input[x])
(R*S*ε0)
,5000;negintegrand[f_]:=NIntegrate
(d+input[a])
(R*S*ε0)
,{a,0,f},AccuracyGoal->Infinity;term3[y_]:=N[Exp[-negintegrand[y]],5000];innerintegrand[g_]:=N[Exp[negintegrand[g]],5000];integrand[h_]:=N
(σ*input[h])
(R*ε0)
*innerintegrand[h],5000;term4[z_]:=N[NIntegrate[integrand[d],{d,0,z},AccuracyGoal->Infinity],5000];output[t_]:=N[term1[t]-term2[t]*term3[t]*term4[t],5000]; range=Table[x,{x,0,1,0.01}];(*Initializeanemptylisttostoretheoutputs*)outputs={};term3s={};term3s={};(*UseaForlooptoevaluatethefunctionforeachinputandstoretheoutput*)For[i=1,i<=Length[range],i++,(*Evaluatethefunctionforthecurrentinputandappendtheresulttotheoutputslist*)Print[term1[range[[i]]]];Print[term2[range[[i]]]];Print[term3[range[[i]]]];Print[term4[range[[i]]]];] (*Plot[N[output],{t,0,1},ScalingFunctions->{"Reverse"},PlotRange->All]*)
0.
23.0687
1.
NIntegrate
:a = d is not a valid limit of integration.
NIntegrate
:a = d is not a valid limit of integration.
NIntegrate
:a = d is not a valid limit of integration.
General
:Further output of NIntegrate::nlim will be suppressed during this calculation.
N
:Internal precision limit $MaxExtraPrecision = 50. reached while evaluating
NIntegrate
d+input[a]
RSε0
,{a,0,d},AccuracyGoal
.
term40.
0.0000170643
54.6692
0.714506
N
:Internal precision limit $MaxExtraPrecision = 50. reached while evaluating
NIntegrate
d+input[a]
RSε0
,{a,0,d},AccuracyGoal
.
General
:-0.×
-5000
10
is too small to represent as a normalized machine number; precision may be lost.
General
:-0.×
-5000
10
is too small to represent as a normalized machine number; precision may be lost.
General
:-0.×
-5000
10
is too small to represent as a normalized machine number; precision may be lost.
General
:Further output of General::munfl will be suppressed during this calculation.
term4124833.
0.0000675696
148.198
0.272508
N
:Internal precision limit $MaxExtraPrecision = 50. reached while evaluating
NIntegrate
d+input[a]
RSε0
,{a,0,d},AccuracyGoal
.
General
:Further output of N::meprec will be suppressed during this calculation.
term43.89169×
46
10
0.000149481
299.885
0.0303718
term45.45052×
115
10
0.000259499
503.622
0.000569059
term47.12655×
212
10
0.000393189
751.197
1.10795×
-6
10
term41.485752047526781×
338
10
0.000545167
1032.64
1.51793×
-10
10
Out[]=
$Aborted
Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.