Wolfram Mathematical Functions | Things to Try
Wolfram Mathematical Functions | Things to Try
Make edits and run any piece of code by clicking inside the code and pressing .
+
Define, compute and visualize. Symbolic and numerical evaluation, visualization and asymptotic expansions of a large collection of mathematical functions—extensively documented and tightly integrated with all areas of Wolfram Language.
Elementary Functions
Elementary Functions
Factor a polynomial: |
In[]:=
Factor[-1]
15
x
Compute a Gröbner basis for polynomials: |
In[]:=
GroebnerBasis[{-2,xy-3},{x,y}]
2
x
2
y
Verify identities between functions: |
In[]:=
Simplify[Sin[x+y]==Sin[x]Cos[y]+Cos[x]Sin[y]]
Compute a series expansion: |
In[]:=
Series[ArcTan[x],{x,0,10}]
Solve a simple growth model whose solution is expressible as elementary functions: |
In[]:=
DSolveValue[{x'[t]-rx[t]==0,x[3]==10},x[t],t]
Interactively explore the effect of the growth parameter: |
In[]:=
Manipulate[Plot[10,{t,0,3},PlotRange->{0,10}],{r,1,5}]
-3r+rt
Special Functions
Special Functions
Compute derivatives of a hypergeometric function: |
In[]:=
D[Hypergeometric2F1[a,b,c,z],{z,n}]
Compute contour integrals of special functions: |
In[]:=
ContourIntegrate[Hypergeometric2F1[2,3,4,z],z∈Circle[{0,0},2]]
Visualize an elliptic function: |
In[]:=
ComplexPlot3D[JacobiSN[z,1/2],{z,-4-4I,4+4I},PlotLegends->Automatic]
Compare the behavior of Bessel functions: |
In[]:=
ReImPlot[{BesselJ[0,x],BesselY[0,x],AiryAi[x]},{x,-5,5},PlotLegends->"ReImExpressions"]
Piecewise and Generalized Functions
Piecewise and Generalized Functions
Define and use piecewise functions as part of computations: |
In[]:=
[x_]:=Piecewise[{{-x+1,x<0},{x,0<x<1},{3x^2-2,True}}]ℊ[x_]:=[t]tPlot[{[x],ℊ[x]},{x,-2,2},PlotLegends->"Expressions"]
x
∫
0
Express the fundamental solution of the Klein–Gordon operator ( ∂ tt 2 ∇ x |
In[]:=
[t_,x_List]:=1/(2π)HeavisideTheta[t]DiracDelta[t^2-x.x]-m/(4π)HeavisideTheta[t-Sqrt[x.x]]BesselJ[1,mSqrt[t^2-x.x]]/Sqrt[t^2-x.x][t,{x,0,0}]//TraditionalForm
Plot the function, which is nonzero only for 2 t x x |
DensityPlot-[t,{x,0,0}]/.m->1,{x,-3,3.02},{t,-3,3.01},Exclusions{{,t≥0}},FrameLabel(Style[TraditionalForm[#1],16]&)/@{x,t},
2
t
2
x
Integer Functions
Integer Functions
Compare the average number of divisors per integer to its asymptotic value: |
In[]:=
ShowListPlotTableDivisorSigma[0,i],{n,100},Plot[Log[n]+2EulerGamma-1,{n,1,100},PlotStyle->ColorData[97,2]]
1
n
n
∑
i=1
Plot the number of primes less than or equal to x π(x) |
In[]:=
Plot[{PrimePi[x],x/Log[x],LogIntegral[x],RiemannR[x]},{x,1.5,100},PlotLabels->"Expressions"]
Compute Function Properties
Compute Function Properties
Find the period of a function: |
In[]:=
FunctionPeriod[Sin[ωx],x]
Test for injectivity: |
In[]:=
FunctionInjective[+ax+b,x]
3
x
Test for surjectivity: |
In[]:=
FunctionSurjective[+ax+b,x]
3
x
Test for bijectivity: |
In[]:=
FunctionBijective[+ax+b,x]
3
x
Find poles of a function: |
In[]:=
FunctionPoles[Gamma[z],z]
Test for analyticity: |
In[]:=
FunctionAnalytic[Gamma[z],z,Complexes]
Test whether a function is meromorphic: |
In[]:=
FunctionMeromorphic[Gamma[z],z]
Compute Exact Symbolic Results
Compute Exact Symbolic Results
Compute integrals of rational functions: |
In[]:=
1
∫
-1
2
4
x
2
x
Compute the Fourier transform of a function: |
In[]:=
FourierTransform[,t,ω]
-Abs[t]
Compute the Mellin transform of a multivariate rational function: |
In[]:=
MellinTransform,{x,y},{s,t}
1
x+y^2+1
Solve a differential equation exactly: |
In[]:=
DSolveValue[{x''[t]+Sin[x[t]]==0,x[0]==1,x'[0]==0},x[t],t]
Compute Numeric Results
Compute Numeric Results
Evaluate functions to specified numeric precision: |
In[]:=
N[JacobiSN[1,1/3],50]
Compute integrals numerically: |
In[]:=
Γintegral[z_?NumberQ]:=NIntegrate[t^(z-1)Exp[-t],{t,0,∞}]{Γintegral[2+3],N[Gamma[2+3]]}//Column
Include uncertainty in expressions: |
In[]:=
ArcCos[Around[u,.1]+IAround[v,.1]]
Visualize a function with uncertainty: |
In[]:=
ListLinePlot[Table[{x,Sin[Around[x,1/4]]},{x,0,2Pi,.1}],IntervalMarkers->"Bands"]
Compute Asymptotic Relationships
Compute Asymptotic Relationships
Compute an asymptotic approximation to n! |
In[]:=
DiscreteAsymptotic[n!,n->∞]
Check that the approximation and expression are equivalent: |
In[]:=
AsymptoticEquivalentn!,+n
-n
1
2
n
2π
,n->∞