Orthocenter
Orthocenter
Load Eos
Load Eos
In[]:=
<<EosLoader`
Eos3.7.2 (June 24,2023) running under Mathematica 13.2.1 for Mac OS X ARM (64-bit) (January 27, 2023) on Fri 23 Jun 2023 16:14:54.
Orthocenter
Orthocenter
The three (possibly extended) altitudes intersect in a single point H of the triangle. Point H is called the orthocenter of the triangle.
In[]:=
EosSession["Orthocenter"];
In[]:=
MarkOff[];
In[]:=
NewOrigami[10]
Orthocenter/Origami: Step 1
Out[]=
In[]:=
NewPoint["E"{6,7}]
Orthocenter/Origami: Step 1
Out[]=
In[]:=
HO["AE"]!
Orthocenter/Origami: Step 3
Out[]=
In[]:=
HO["BE"]!
Orthocenter/Origami: Step 5
Out[]=
In[]:=
HO["AE","B",Mark{"AE"}]!
Orthocenter/Origami: Step 7
Out[]=
In[]:=
HO["BE","A",Mark{{"EB"}}]!
Orthocenter/Origami: Step 9
Out[]=
In[]:=
HO["AB","E",Mark{{"AB","I"},{"AG","H"}}]!
Orthocenter/Origami: Step 11
Out[]=
In[]:=
triangle={Thick,Red,Line[{"A","B","E","A"}]};
In[]:=
ShowOrigami[More{triangle}]
Orthocenter/Origami: Step 11
Out[]=
In[]:=
Goal[CollinearQ["A","H","G"]∧CollinearQ["B","H","F"]];
In[]:=
Prove["Orthocenter",Mapping{"A"{0,0},"B"{1,0},"C"{1,1},"D"{0,1},"E"{u,v}}]
Proof is successful.
Orthocenter/Origami: Step 11
Out[]=
In[]:=
EndSession[];