Gradient Descent and the Silver Ratio
Gradient Descent and the Silver Ratio
This notebook verifies the algebraic identities in Section 3.2 of the paper
“Acceleration by Stepsize Hedging II: Silver Stepsize Schedule for Smooth Convex Optimization”
by Jason M. Altschuler and Pablo A. Parrilo [ https://arxiv.org/abs/2309.16530 ]
“Acceleration by Stepsize Hedging II: Silver Stepsize Schedule for Smooth Convex Optimization”
by Jason M. Altschuler and Pablo A. Parrilo [ https://arxiv.org/abs/2309.16530 ]
Definitions and relations
Definitions and relations
Definitions and relations
In[]:=
(*Silverratio*)rho=1+Sqrt[2];(*SilverStepsizeforiterationn=2^k-1,fromequation(2.1)*)an=1+rho^(k-1);(*Silverconvergenceratefromequation(1.4)*)r=k1/(1+Sqrt[4rho^(2k)-3]);rk=r[k];(*r_k*)rk1=r[k+1];(*r_{k+1}*)(*Sparsecorrectionsinequation(3.7)*)d12=rk1(rho);d13=rk1(1-rho^k);d21=rk1(rho^k);d23=rk1(2rho-Sqrt[2]rho^(k+1));d31=rk1(1+rho^(k-1)-1/(2rk));d32=rk1(1/(2rk1)-(1+2rho)/(2rk));(*ThethreematricesinLemma3.7*)EE=rk1{{-2rho,(1+2*rho)an-1/(2rk),0,0},{0,1/(4rk^2)-(1+2*rho)an^2,0,0},{0,0,2rho,1/(2rk1)-(1+2rho)/(2*rk)},{0,0,0,(1+2*rho)/(4rk^2)-1/(4*rk1^2)}};S={{0,(d21+d31),0,-d12},{0,-(d13+d31+d21+d12),-d21,d12+d21},{0,0,0,(d12+d32)},{0,0,0,-(d12+d21+d23+d32)}};L=rhork1{{-2,2+rho^(k-1),0,1},{0,-1-rho^k-2rho^(k-1),rho^(k-1),-1-rho^(k-1)},{0,0,2,-1},{0,0,0,1-rho^k}};
Verify identity
Verify identity
In[]:=
DD=S+L-EE;Simplify[DD]//MatrixForm
Out[]//MatrixForm=
0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 |