Box Integral
Box Integral
In[]:=
V (Q1, Q1 + L, m1)[a, b] = V31
In[]:=
V31=-ik((g[a,c]*g[b,d]+g[a,d]*g[b,c])P[Q1,c]*P[-Q1-L,d])
Out[]=
-ik(g[a,d]g[b,c]+g[a,c]g[b,d])P[-L-Q1,d]P[Q1,c]
In[]:=
S(Q1+L,m1)=S31
In[]:=
S31=
-i
((Q1+L)^2+(m1)^2)
Out[]=
-+
i
2
m1
2
(L+Q1)
V(Q1+L,Q2,m1)[e,f]=V12
In[]:=
V32=-ik((g[e,g]*g[f,h]+g[e,h]*g[f,g])*P[Q1+L,g]*P[Q2,h])
Out[]=
-ik(g[e,h]g[f,g]+g[e,g]g[f,h])P[L+Q1,g]P[Q2,h]
G(L+W)[e,f][i,j]=G11
In[]:=
G31=(g[e,i]*g[f,j]+g[e,j]*g[f,i])-(g[e,f]*g[i,j])
-i
(W+L)^2
1
2
1
(D-2)
Out[]=
-
i(g[e,j]g[f,i]+g[e,i]g[f,j])-
1
2
g[e,f]g[i,j]
-2+D
2
(L+W)
V(L-Q4,Q3)[i,j]=V33
In[]:=
V33=-ik((g[i,k]*g[j,n]+g[i,n]*g[j,k])P[-(L-Q4),k]*P[Q3,n])
Out[]=
-ik(g[i,n]g[j,k]+g[i,k]g[j,n])P[Q3,n]P[-L+Q4,k]
S(L-Q4,m2)=S32
In[]:=
S32=
-i
((-L+Q4)^2+(m2)^2)
Out[]=
-+
i
2
m2
2
(-L+Q4)
V(Q4,L-Q4)[o,p]=V24
In[]:=
V34=(-ik((g[o,r]*g[p,s]+g[o,s]*g[p,r])P[Q4,r]*P[L-Q4,s]))
Out[]=
-ik(g[o,s]g[p,r]+g[o,r]g[p,s])P[L-Q4,s]P[Q4,r]
G(L)[a,b][o,p]=G32
In[]:=
G32=(g[o,a]*g[p,b]+g[o,b]*g[p,a])-*g[o,p]*g[a,b]
-i
L^2
1
2
1
(D-2)
Out[]=
-
i-+(g[o,b]g[p,a]+g[o,a]g[p,b])
g[a,b]g[o,p]
-2+D
1
2
2
L
Inti3
Inti3
In[]:=
inti3=(V31)*(S31)*(V32)*(G31)*(V33)*(S32)*(V34)*(G32)
Out[]=
4
i
4
ik
1
2
g[e,f]g[i,j]
-2+D
g[a,b]g[o,p]
-2+D
1
2
2
L
2
m1
2
(L+Q1)
2
m2
2
(-L+Q4)
2
(L+W)
In[]:=
rules={P[x1_,x3_]*P[x2_,x3_]Dotp[x1,x2],P[x1_,x3_]*g[x2___,x3_,x4___]P[x1,x2,x4],P[x1_,x2_]^2Dotp[x1,x1],g[x1___,x5_,x2___]*g[x3___,x5_,x4___]g[x1,x3,x2,x4],g[x1_,x2_]^2g[x1,x1],g[x1_,x1_]D};num3=Factor[Numerator[inti3]]
Out[]=
1
4
2
(-2+D)
4
i
4
ik
In[]:=
Enum3=Expand[num3];FSInt3=FullSimplify[Enum3//.rules]
Out[]=
1
2
(-2+D)
4
i
4
ik
In[]:=
rull01={W:>Q1+Q2};DI3=Denominator[inti3]//.rull01
Out[]=
2
L
2
m1
2
(L+Q1)
2
(L+Q1+Q2)
2
m2
2
(-L+Q4)
CrosBox Integral
CrosBox Integral
Rules 4
Rules 4
V(-Q2-L,Q2)[ab]=V41
In[]:=
V41=(-ik(g[a,d]g[b,c]+g[a,c]g[b,d])P[-(L+Q2),c]P[Q2,d])
Out[]=
-ik(g[a,d]g[b,c]+g[a,c]g[b,d])P[-L-Q2,c]P[Q2,d]
S(Q1+L,m1)=S41
In[]:=
S41=+
-i
2
(L+Q2)
2
m1
Out[]=
-+
i
2
m1
2
(L+Q2)
V(Q1,Q2+L)[e,f]=V42
In[]:=
V42=(-ik(g[e,h]g[f,g]+g[e,g]g[f,h])P[L+Q2,g]P[Q1,h])
Out[]=
-ik(g[e,h]g[f,g]+g[e,g]g[f,h])P[Q1,h]P[L+Q2,g]
G(L+W)[e,f][i,j]=G41
In[]:=
G41=(g[e,i]*g[f,j]+g[e,j]*g[f,i])-(g[e,f]*g[i,j])
-i
(W+L)^2
1
2
1
(D-2)
Out[]=
-
i(g[e,j]g[f,i]+g[e,i]g[f,j])-
1
2
g[e,f]g[i,j]
-2+D
2
(L+W)
V(Q4,L+Q3)[i,j]=V23
In[]:=
V43=(-ik(g[i,k]*g[j,n]+g[i,n]*g[j,k])P[-(L-Q4),n]P[Q3,k])
Out[]=
-ik(g[i,n]g[j,k]+g[i,k]g[j,n])P[Q3,k]P[-L+Q4,n]
In[]:=
S42=
-i
(Q4-L)^2+m2^2
Out[]=
-+
i
2
m2
2
(-L+Q4)
V(L-Q4,Q3)[o,p]=V44
In[]:=
V44=(-ik(g[o,s]g[p,r]+g[o,r]g[p,s])P[Q4,r]P[L-Q4,s])
Out[]=
-ik(g[o,s]g[p,r]+g[o,r]g[p,s])P[L-Q4,s]P[Q4,r]
G(L)[a,b][o,p ]=G32
G(L)[a,b][o,p ]=G32
In[]:=
G22=(g[o,a]*g[p,b]+g[o,b]*g[p,a])-(g[o,p]*g[a,b])
-i
(L^2)
1
2
1
(D-2)
Out[]=
-
i-+(g[o,b]g[p,a]+g[o,a]g[p,b])
g[a,b]g[o,p]
-2+D
1
2
2
L
Inti4
Inti4
Linearity of the inner product of the Box and CrosBox
Linearity of the inner product of the Box and CrosBox
Linearity of the inner product of the Box and CrosBox
Development:
Development:
Defitons
Exampels:
Rull2n
Test:
Final rule
Development minus-rule
Development minus-rule
Defs:
Final rule
Rule 24 and 31 act on FSInt3 (Box).
Rule 24 and 31 act on FSInt3 (Box).
Rule 24 and 31 act on FSInt2 (CrosBox)
Rule 24 and 31 act on FSInt2 (CrosBox)
Formulierung in Terms of Mandelstam variables and Decomposition of Integrand.
Formulierung in Terms of Mandelstam variables and Decomposition of Integrand.
Defs Mandelstam variables:
Defs Mandelstam variables:
Rules 41, 51 act on FSR33 (Box)
Rules 41, 51 act on FSR33 (Box)
Rules 41, 51 act on FSR43 (CrosBox)
Rules 41, 51 act on FSR43 (CrosBox)
Development of the Decomposition rule :
Development of the Decomposition rule :
Rull61 Sym of Dotp[Qn,L]
Rull71 mass wiki https://en.wikipedia.org/wiki/Energy%E2%80%93momentum_relation
Decomposition rule for the Box (FSR35).
Decomposition rule for the Box (FSR35).
Sorse: https://en.wikipedia.org/wiki/Mandelstam_variables
Application of the decomposition rull3171, from EQS3 to FSR35
Application of the decomposition rull3171, from EQS3 to FSR35
Rules 41, 51 act on FSR43 (CrosBox)
Rules 41, 51 act on FSR43 (CrosBox)
Decomposition rule for the CrosBox (FSR45).
Decomposition rule for the CrosBox (FSR45).
Sorse: https://en.wikipedia.org/wiki/Mandelstam_variables
Application of the decomposition rull4171, from EQS4 to FSR45
Application of the decomposition rull4171, from EQS4 to FSR45
Excluding invers Propagator:
Excluding invers Propagator:
Rull divelupmend for IProp Exlusion:
Rull divelupmend for IProp Exlusion:
rull27n:
Test:
Application of the IProp Exlusion rull271 to R323 Box:
Application of the IProp Exlusion rull271 to R323 Box:
Application of the IProp Exlusion rull271 to R426 CrosBox
Application of the IProp Exlusion rull271 to R426 CrosBox
Comperisen Whit Litutur:
Comperisen Whit Litutur:
Text Def test valus:
Box
CrosBox
Baikov representation
Baikov representation
Nominator of Int:
Nominator of Int:
Nominator of Box:
Nominator of CrosBox:
Denominator:
Denominator:
Baikov representation rull:
Denominator of Box and CrosBox:
Denominator in Baikov representation:
Mometum Gram matrix
Mometum Gram matrix
Loop momentum Gram matrix
Loop momentum Gram matrix
Mometum Gram matrix of Box
Mometum Gram matrix of Box
Baikov representation rull for IProp
Mometum Gram matrix of CrosBox.
Mometum Gram matrix of CrosBox.
TBD
TBD
Compersen withs H.
Compersen withs H.
rull from H to T convetion.
H Box Expresion:
Numerical Comparison for Box and B-Const
CrosBox
CrosBox
H Mometum Gram matrix :
Numerical Comparison for CrosBox and B-Const
Seff Compersen:
Triangel
Triangel
Rull
Tignale decomposition rull IProp[m1^2 + (L + Q1)^2]
Tignale decomposition rull IProp[(L + Q1 + Q2)^2]
Tignale decomposition rull IProp[(Q4 - L)^2 + m2^2]
Tignale decomposition rull IProp[L2]