WOLFRAM NOTEBOOK

In[]:=
ResourceFunction["UnformalizeSymbols"][Last/@AxiomaticTheory["BooleanAxioms"]]/.{CircleTimes->Wedge,CirclePlus->Vee}
Out[]=
abba,a(bc)abac,ab
b
a,a(b
b
)a,abba,abc(ab)(ac)
In[]:=
AccumulativeTokenEventGraph[AxiomaticTheoryTWP[AxiomaticTheory["BooleanAxioms"]],1,"TokenLabeling"->False,GraphLayout->"SpringElectricalEmbedding"]
Out[]=
In[]:=
VertexList[%,_TwoWayRule]
In[]:=
ResourceFunction["UnformalizeSymbols"][VertexList[%231,_TwoWayRule]/.p_Pattern:>First[p]]/.{CircleTimes->Wedge,CirclePlus->Vee,TwoWayRule->Equal}
Out[]=
In[]:=
interesting=First/@{{a==aa,"idempotent law for and"},{a==aa,"idempotent law for or"},{ab==ba,"commutativity for and"},{ab==ba,"commutativity for or"},{a==a,"law of double negation"},{aa==bb,"law of noncontradiction"},{aa==bb,"law of excluded middle"},{(ab)==ab,"de Morgan law"},{(ab)==ab,"de Morgan law"},{a==a(ab),"absorption law"},{a==aab,"absorption law"},{(ab)c==a(bc),"associativity of and"},{(ab)c==a(bc),"associativity of or"}}/.Square->OverBar
Out[]=
aaa,aaa,abba,abba,a
a
,
a
a
b
b,
a
a
b
b,
ab
a
b
,
ab
a
b
,aa(ab),aaab,(ab)ca(bc),(ab)ca(bc)
In[]:=
Position[%236,#]&/@%238
Out[]=
{{},{},{{1}},{{5}},{},{},{},{},{},{},{},{},{}}
In[]:=
interesting/.{a->a_,b->b_,c->c_}
Out[]=
a_a_a_,a_a_a_,a_b_b_a_,a_b_b_a_,a_
a_
,
a_
a_
b_
b_,
a_
a_
b_
b_,
a_b_
a_
b_
,
a_b_
a_
b_
,a_a_(a_b_),a_a_a_b_,(a_b_)c_a_(b_c_),(a_b_)c_a_(b_c_)
In[]:=
Position[%236,#]&/@%242
Out[]=
{{},{},{{1}},{{5}},{},{},{},{},{},{},{},{},{}}
In[]:=
Position[%236,#]&/@(Reverse/@%242)
Out[]=
{{},{},{{1}},{{5}},{},{},{},{},{},{},{},{},{}}
In[]:=
thms2=ResourceFunction["UnformalizeSymbols"][VertexList[#,_TwoWayRule]/.p_Pattern:>First[p]]/.{CircleTimes->Wedge,CirclePlus->Vee,TwoWayRule->Equal}&[AccumulativeTokenEventGraph[AxiomaticTheoryTWP[AxiomaticTheory["BooleanAxioms"]],2,"TokenLabeling"->False,GraphLayout->"SpringElectricalEmbedding"]];
Out[]=
$Aborted
Position[thms2,#]&/@interesting
Position[thms2,#]&/@(interesting/.{a->a_,b->b_,c->c_})

In Draft-04: look at pure path case, rather than accumulative

MultiwayRulesNestGraph[x_y_<->(y_x_)y_,(ab)a,5,GraphLayout"SpringElectricalEmbedding",VertexShapeFunction->Automatic]
In[]:=
AxiomaticTheoryTWP[AxiomaticTheory["BooleanAxioms"]]/.{CircleTimes->Wedge,CirclePlus->Vee}
Out[]=
a_b_b_a_,a_(b_c_)a_b_a_c_,a_b_
b_
a_,a_(b_
b_
)a_,a_b_b_a_,a_b_c_(a_b_)(a_c_)
MultiwayRulesNestGraph[AxiomaticTheoryTWP[AxiomaticTheory["BooleanAxioms"]],(ab)a,5,GraphLayout"SpringElectricalEmbedding",VertexShapeFunction->Automatic]
In[]:=
interesting=aaa,aaa,abba,abba,a
a
,
a
a
b
b,
a
a
b
b,
ab
a
b
,
ab
a
b
,aa(ab),aaab,(ab)ca(bc),(ab)ca(bc);
In[]:=
MultiwayRulesNestGraph[AxiomaticTheoryTWP[AxiomaticTheory["BooleanAxioms"]],a,1]
Out[]=
In[]:=
MultiwayRulesNestGraph[AxiomaticTheoryTWP[AxiomaticTheory["BooleanAxioms"]],a_,2,AspectRatio->1/2]
Out[]=
WHY are the a_’s not merged?
In[]:=
MultiwayRulesNestGraph[AxiomaticTheoryTWP[AxiomaticTheory["BooleanAxioms"]]/.{CircleTimes->Wedge,CirclePlus->Vee},a_,2,GraphLayout->"SpringElectricalEmbedding"]
Out[]=
In[]:=
MultiwayRulesNestGraph[AxiomaticTheoryTWP[AxiomaticTheory["BooleanAxioms"]]/.{CircleTimes->Wedge,CirclePlus->Vee},a,2,GraphLayout->"SpringElectricalEmbedding"]
Out[]=
Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.