WOLFRAM NOTEBOOK

Relation between models and reference frames

Reference frame is way of foliating the multiway graph

Model is a way of coloring pieces of the multiway graph that are equivalent

Consider the non-accumulative case

In[]:=
MultiwayRulesNestGraph[x_y_<->(y_x_)y_,(ab)a,3,AspectRatio->1/2]
Out[]=

A model tells us which are equal:

In[]:=
symbolifyPatterns[x_y_<->(y_x_)y_]/.TwoWayRule->Equal
Out[]=
xy(yx)y
In[]:=
ResourceFunction["FindFiniteModels"][xy(yx)y,2]
Out[]=
{0}SmallCircle{{0,0},{0,0}},{1}SmallCircle{{0,0},{0,1}},{5}SmallCircle{{0,1},{0,1}},{7}SmallCircle{{0,1},{1,1}},{10}SmallCircle{{1,0},{1,0}},{15}SmallCircle{{1,1},{1,1}}
In[]:=
VertexList[%1410]
Out[]=
{(ab)a,ba,(a(ab))a,((ba)b)a,(a(a(ab)))a,(a((ba)b))a,(((ab)a)(ab))a,((b(ba))b)a,(((ab)a)b)a,(a(a(a(ab))))a,(a(a((ba)b)))a,(a(((ab)a)(ab)))a,(((a(ab))a)(a(ab)))a,(a((b(ba))b))a,(a(((ab)a)b))a,((((ba)b)a)((ba)b))a,((b(b(ba)))b)a,((b((ab)a))b)a,((((ba)b)(ba))b)a,(((a(ab))a)b)a,((((ba)b)a)b)a,((ba)(ab))a,(((ab)a)((ba)b))a,(((ab)((ab)a))(ab))a,(((a(ab))a)(ab))a,((((ba)b)a)(ab))a}
In[]:=
ApplyFiniteModel[#,SmallCircle{{0,1},{1,1}},{a,b}]&/@VertexList[%1410]
Out[]=
{{{0,1},{1,1}},{{0,1},{1,1}},{{0,1},{1,1}},{{0,1},{1,1}},{{0,1},{1,1}},{{0,1},{1,1}},{{0,1},{1,1}},{{0,1},{1,1}},{{0,1},{1,1}},{{0,1},{1,1}},{{0,1},{1,1}},{{0,1},{1,1}},{{0,1},{1,1}},{{0,1},{1,1}},{{0,1},{1,1}},{{0,1},{1,1}},{{0,1},{1,1}},{{0,1},{1,1}},{{0,1},{1,1}},{{0,1},{1,1}},{{0,1},{1,1}},{{0,1},{1,1}},{{0,1},{1,1}},{{0,1},{1,1}},{{0,1},{1,1}},{{0,1},{1,1}}}
In[]:=
ApplyFiniteModel[#,SmallCircle{{1,0},{0,0}},{a,b}]&/@VertexList[%1410]
Out[]=
{{{0,1},{0,0}},{{1,0},{0,0}},{{1,0},{0,0}},{{1,1},{0,0}},{{0,1},{0,0}},{{0,0},{0,0}},{{1,1},{0,0}},{{0,1},{0,0}},{{0,1},{0,0}},{{1,0},{0,0}},{{1,1},{0,0}},{{0,0},{0,0}},{{1,1},{0,0}},{{1,0},{0,0}},{{1,0},{0,0}},{{1,1},{0,0}},{{1,1},{0,0}},{{1,1},{0,0}},{{0,1},{0,0}},{{1,1},{0,0}},{{1,1},{0,0}},{{1,0},{0,0}},{{0,1},{0,0}},{{1,0},{0,0}},{{1,0},{0,0}},{{1,1},{0,0}}}
In[]:=
With[{g=EdgeList[MultiwayRulesNestGraph[x_y_<->(y_x_)y_,(ab)a,3,AspectRatio->1/2]]},Graph[g,VertexStyle->(#->Hue[FromDigits[Flatten[ApplyFiniteModel[#,SmallCircle{{1,0},{0,0}},{a,b}]],2]/20]&/@VertexList[g]),GraphLayout->"LayeredDigraphEmbedding"]]
Out[]=
In[]:=
With[{g=EdgeList[MultiwayRulesNestGraph[x_y_<->(y_x_)y_,(ab)a,3,AspectRatio->1/2]]},Graph[g,VertexStyle->(#->Hue[FromDigits[Flatten[ApplyFiniteModel[#,SmallCircle{{0,1},{1,1}},{a,b}]],2]/20]&/@VertexList[g]),GraphLayout->"LayeredDigraphEmbedding"]]
Out[]=
In[]:=
Function[mat,With[{g=EdgeList[MultiwayRulesNestGraph[x_y_<->(y_x_)y_,(ab)a,2,AspectRatio->1]]},Graph[g,AspectRatio->1,VertexSize->.2,VertexStyle->(#->Hue[FromDigits[Flatten[ApplyFiniteModel[#,SmallCirclemat,{a,b}]],2]/20]&/@VertexList[g]),GraphLayout->"LayeredDigraphEmbedding"]]]/@Tuples[{1,0},{2,2}]
Out[]=
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
In[]:=
ParallelMap[Function[mat,With[{g=EdgeList[MultiwayRulesNestGraph[x_y_<->(y_x_)y_,(ab)a,3,AspectRatio->1]]},Graph[g,AspectRatio->1,VertexSize->1,VertexStyle->(#->Hue[FromDigits[Flatten[ApplyFiniteModel[#,SmallCirclemat,{a,b}]],2]/20]&/@VertexList[g]),GraphLayout->"LayeredDigraphEmbedding"]]],Tuples[{1,0},{2,2}]]

Reference frames: foliations that determine what we do first in the entailment graph

E.g. make a foliation where one gets to small theorems fast

E.g. imagine a foliation where you’re always looking at larger expressions :: this doesn’t satisfy partial order

The observer is e.g. merely saying what color things are ... that is their coarse graining

The observer approximates the structure by a model, then wants to make an effective theory based on the model.
If the model is a slam dunk, then the effective theory is trivial.

If the model isn’t completely there, then the observer might still be able to make an effective theory.... [[ e.g. describe the dynamics as transitions between colors ]]

Models vs. proofs:

To verify a model with arity a one needs k^k^a cases [[[ one can imagine a “faithful model” that is a perfect “classification” ... all expressions that are equal have equal values and vice versa ]]]
Proof: only follow the proof path

In the expression equality case, everything is two-way

Accumulative case

In the accumulative case, there is a definite flow

We should draw the accumulative entailment cone ... then for a given model this cone will be colored in variegated way
Any correct model will confirm that an entailed theorem is correct....
This is an actual model....

To make a reference frame, you need a monotone function.....

E.g. from an expression, get a function that always increases for an entailment......

Imagine a model that maps expressions to integers

Say is Plus; say every variable is 1

In this case, FWIW every integer can eventually be generated.....
[[[ Relation to CH ? ]]]

A monotonic model would be a reference frame.....

E.g. A AA
Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.