In[]:=
Clear[f]Clear[f]f[n_Integer/;n>1]:=f[n-1]+f[n-2]f[n_/;n<2]:=1ResourceFunction["https://www.wolframcloud.com/obj/nikm/DeployedResources/Function/MultiEvaluate/"][f[4],5,"Graph","EvaluatePattern"->(Plus|Times)[__Integer],"Trace"->False]
Out[]=
Memoized Fibonacci
In[]:=
ClearAll[f]f[0]=f[1]=1;f[n_]:=f[n]=f[n-1]+f[n-2]
In[]:=
ResourceFunction[CloudObject["https://www.wolframcloud.com/obj/nikm/DeployedResources/Function/TraceCausalGraph"]][f[8],VertexShapeFunction->Automatic,GraphLayout->"LayeredDigraphEmbedding"]
Out[]=
Unmemoized
In[]:=
ClearAll[f]f[0]=f[1]=1;f[n_]:=f[n-1]+f[n-2]
In[]:=
ResourceFunction[CloudObject["https://www.wolframcloud.com/obj/nikm/DeployedResources/Function/TraceCausalGraph"]][f[8],VertexShapeFunction->Automatic,GraphLayout->"LayeredDigraphEmbedding"]
Out[]=
In[]:=
ResourceFunction[CloudObject["https://www.wolframcloud.com/obj/nikm/DeployedResources/Function/TraceCausalGraph"]][2*3+4*5+6*7,"IncludeInitialEvent"->True]
Out[]=
In[]:=
ResourceFunction[CloudObject["https://www.wolframcloud.com/obj/nikm/DeployedResources/Function/TraceCausalGraph"]][{1+1,1+1,1+1},"IncludeInitialEvent"->True]
Out[]=
In[]:=
ResourceFunction[CloudObject["https://www.wolframcloud.com/obj/nikm/DeployedResources/Function/TraceCausalGraph"]][2*(2*2+3*3+4*4),"IncludeInitialEvent"->True]
Out[]=
ResourceFunction[CloudObject["https://www.wolframcloud.com/obj/nikm/DeployedResources/Function/TraceCausalGraph"]][2*(2*2+3*3+4*4),"IncludeInitialEvent"->True]
Formatting
Formatting
Quantum
Quantum
Multi is like a superposition
Is the Multi separable? As in, it can be replaced by some kind of spacelike separated elements
Side traces
Side traces
[E.g. conditions for patterns etc. ] [ allocate a different spatial position for the side trace ... ]
Non-terminating
Non-terminating
CTC from a = b , b = a ;;; only if states are equivalenced
Hypergraphs?
Hypergraphs?
Patterns
Patterns