In[]:=
ArrayPlot[Map[IntegerDigits[#[[2]],2,32]+IntegerDigits[#[[1]],2,32]&,Keys[$LifetimeData[2,2,"Symmetric"]]],GridLines->{None,(Last[#]-#)&[Accumulate[Length/@Split[Values[$LifetimeData[2,2,"Symmetric"]]]]]},GridLinesStyle->Directive[Red,Thick],Mesh->True,ColorRules->{0->Gray,1->White,2->Black},Frame->True,FrameTicks->{{None,None},{MapIndexed[{First[#2]-.5,#}&,ArrayPlot[List/@#,Mesh->True,ImageSize->7]&/@Tuples[{1,0},5]],None}}]
Out[]=
In[]:=
ArrayPlot[Map[If[#[[1]]==0,0,1+#[[2]]]&/@Transpose[{IntegerDigits[#[[2]],2,32],IntegerDigits[#[[1]],2,32]}]&,Keys[$LifetimeData[2,2,"Symmetric"]]],GridLines->{None,(Last[#]-#)&[Accumulate[Length/@Split[Values[$LifetimeData[2,2,"Symmetric"]]]]]},GridLinesStyle->Directive[Red,Thick],Mesh->True,ColorRules->{0->Gray,1->White,2->Black},Frame->True,FrameTicks->{{None,None},{MapIndexed[{First[#2]-.5,#}&,ArrayPlot[List/@#,Mesh->True,ImageSize->7]&/@Tuples[{1,0},5]],None}}]
Out[]=
$LifetimeData[2,2,"Symmetric"]
In[]:=
$LifetimeData[2,2,"Symmetric"]
Out[]=
{0,65815}0,{276,285295007}1,{1048868,156317055}2,{1049892,3507586495}2,{139469092,424769023}3,{139473252,3646010879}3,{269484468,424769023}3,{1343260068,3646010879}3,{3222308132,3507602879}3,{1343260084,3646027263}4,{3360731492,3646027263}4,{269616548,4120108543}5,{269632932,4154449919}5,{613570916,4258528767}5,{2416985508,4189312511}5,{2551203236,4260494847}5,{35541860,2145386495}6,{204478820,1039367679}6,{269501860,4122205695}6,{303974308,4292870143}6,{749754724,4260494847}6,{2419066276,4122074623}6,{2419082660,4156415999}6,{70261092,494108159}7,{749738340,2113011199}7,{815792532,968316927}7,{947913108,1033330687}7,{1476690836,4187478015}7,{2419066292,4122074623}7,{2453424036,4294836223}7,{2961310100,4120371199}7,{1889699220,4260888575}8,{2555536804,4294967295}8,{336612772,4260625919}9,{2555405732,4260625919}9,{3970996580,4260494847}9,{716968804,4294967295}10,{335546772,1035427839}11,{336727476,4294967295}11,{2484211124,4294967295}11,{370806196,4294967295}12,{1823512932,4294967295}12,{2485258644,4294967295}12,{2489461140,4294967295}12,{2518289844,4294967295}12,{303695284,4290502143}13,{2451178932,4290502143}13,{2519337364,4294967295}13,{2623678868,4294967295}13,{3938227044,4294967295}13,{503843220,1069506559}14,{848954804,4160749567}14,{1445759892,4290764799}14,{3164735892,4260888575}14,{1344570260,4290764799}15,{2418147732,4160749567}16,{649615716,4294704639}17,{849086372,4294967295}17,{2452226452,4160749567}17,{3028421012,4294967295}18,{814745012,4294967295}19,{880937364,4156547071}19,{2486177204,4290764799}19,{2487363988,4160749567}19,{2585396644,4294967295}19,{848823732,4294967295}20,{2619476372,4294967295}21,{1514709396,4294967295}22,{438044596,4288667647}23,{3662193044,4294967295}23,{615536996,2147483647}25,{3029470644,4294967295}25,{2417100196,4294967295}28,{3392835940,4294967295}28,{3063549364,4294967295}39,{2417362868,4294967295}45,{2455381412,4294967295}64
In[]:=
Count[{4,2,1,0,1},{0,1}]
Out[]=
0
Counts
In[]:=
KeyValueMap[#2->Function[x,Count[x,#]&/@{0,1,2}]@(If[#[[1]]==0,0,1+#[[2]]]&/@Transpose[{IntegerDigits[#[[2]],2,32],IntegerDigits[#[[1]],2,32]}])&,$LifetimeData[2,2,"Symmetric"]]
Out[]=
{0{26,6,0},1{21,8,3},2{16,12,4},2{16,11,5},3{13,12,7},3{11,12,9},3{13,12,7},3{11,12,9},3{15,9,8},4{10,12,10},4{10,10,12},5{8,16,8},5{4,19,9},5{5,15,12},5{8,15,9},5{5,17,10},6{2,18,12},6{7,15,10},6{7,17,8},6{1,18,13},6{5,14,13},6{8,15,9},6{4,18,10},7{9,14,9},7{6,14,12},7{9,15,8},7{8,16,8},7{7,15,10},7{8,14,10},7{1,17,14},7{6,17,9},8{2,18,12},8{0,19,13},9{4,18,10},9{4,16,12},9{5,12,15},10{0,18,14},11{7,18,7},11{0,21,11},11{0,20,12},12{0,19,13},12{0,18,14},12{0,22,10},12{0,20,12},12{0,18,14},13{4,17,11},13{4,16,12},13{0,20,12},13{0,19,13},13{0,15,17},14{5,17,10},14{1,18,13},14{2,16,14},14{2,17,13},15{2,20,10},16{1,23,8},17{2,16,14},17{0,19,13},17{1,21,10},18{0,21,11},19{0,22,10},19{3,19,10},19{2,18,12},19{1,20,11},19{0,20,12},20{0,20,12},21{0,21,11},22{0,20,12},23{3,16,13},23{0,19,13},25{1,19,12},25{0,18,14},28{0,23,9},28{0,18,14},39{0,16,16},45{0,20,12},64{0,19,13}}
In[]:=
ListPlot[Transpose[Thread/@KeyValueMap[#2->Function[x,Count[x,#]&/@{0,1,2}]@(If[#[[1]]==0,0,1+#[[2]]]&/@Transpose[{IntegerDigits[#[[2]],2,32],IntegerDigits[#[[1]],2,32]}])&,$LifetimeData[2,2,"Symmetric"]]]/.Rule->List,Filling->{1->Bottom},FillingStyle->Opacity[.3]]
Out[]=
In[]:=
ListPlot[Transpose[Thread/@KeyValueMap[#2->Function[x,Count[x,#]&/@{0,1,2}]@(If[#[[1]]==0,0,1+#[[2]]]&/@Transpose[{IntegerDigits[#[[2]],2,32],IntegerDigits[#[[1]],2,32]}])&,$LifetimeData[2,2,"99%"]]]/.Rule->List,Filling->{1->Bottom},FillingStyle->Opacity[.3],PlotRange->{0,32},PlotStyle->Large]
Out[]=
[[ Could have points on top of each other ]]
Volume of the subspace vs. steps
Volume of the subspace vs. steps
# undetermined bits vs. lifetime