ParallelTable[Module[{res=(SeedRandom[42343+i];NestList[First[MinimalBy[Append[Table[CARuleMutation[#],5],#],DeathLossFunction[#,500]&]]&,{0,3,1},1000]),uniqs},uniqs=First/@(First/@SplitBy[{#,DeathLossFunction[#,500]}&/@res,Last]);{#->{-DeathLossFunction[#,500],Flatten[Position[res,#]][[1]]}}&/@uniqs],{i,150}]
In[]:=
SeedRandom[426778];NestList[Module[{ru=CARuleMutation[First[#]],loss},If[(loss=DeathLossFunction[ru,500])<=Last[#],{ru,loss},#]]&,{{0,3,1},0},400]
In[]:=
AlwaysGainList[list_]:={#2[[1]][[1]],-#2[[1]][[2]],Length[#1]}&@@@Partition[SplitBy[list,Last],2,1]
In[]:=
AlwaysGainList[%89]
Out[]=
{{{1558690240158,3,1},1,38},{{514023487596,3,1},4,47},{{4567913185281,3,1},5,55},{{7287436131117,3,1},6,91},{{5592884421399,3,1},7,9},{{5586032021307,3,1},10,34},{{5593005590109,3,1},13,1},{{5624515853304,3,1},15,33},{{5624518978527,3,1},16,14}}
In[]:=
IncludeNeutralList[list_]:={Last[#][[1]][[1]],-Last[#][[1]][[2]],Length[#]}&/@Partition[SplitBy[list,First],2,1]
In[]:=
MakePix1[list_]:=Map[Labeled[ArrayPlot[CellularAutomaton[#[[1]],{{1},0},#[[2]]+5],ColorRules->{0->White,1->Red,2->Blue,3->Green}],{#[[2]],#[[3]]}]&,list]
In[]:=
MakePix1[AlwaysGainList[SeedRandom[426778];NestList[Module[{ru=CARuleMutation[First[#]],loss},If[(loss=DeathLossFunction[ru,500])<=Last[#],{ru,loss},#]]&,{{0,3,1},0},400]]]
Out[]=
,
,
,
,
,
,
,
,
{1,38} |
{4,47} |
{5,55} |
{6,91} |
{7,9} |
{10,34} |
{13,1} |
{15,33} |
{16,14} |
In[]:=
MakePix1[AlwaysGainList[SeedRandom[426778];NestList[Module[{ru=CARuleMutation[First[#]],loss},If[(loss=DeathLossFunction[ru,500])<=Last[#],{ru,loss},#]]&,{{0,3,1},0},5000]]]
Out[]=
,
,
,
,
,
,
,
,
,
,
,
,
{1,38} |
{4,47} |
{5,55} |
{6,91} |
{7,9} |
{10,34} |
{13,1} |
{15,33} |
{16,14} |
{17,3045} |
{20,20} |
{40,7} |
{51,54} |
[[ ? intersperse steps between images ]]
[[[ I.e. need neutral moves to achieve evolution ! ]]]]
[[[[[ NOTE: may try same rule many times .... ]]]]]
<<<<<< Do the optimal path through rule space ; what to do about degeneracies ?? >>>>>
Note: picks only one direction at each step; drops ties...
Random choice of ties at each step.....
Pick last element in each minimal set:
k=2, r=2, symmetric
k=2, r=2, symmetric
? put rule icons underneath ??
k=3, r=1, symmetric
k=3, r=1, symmetric