WOLFRAM NOTEBOOK

In[]:=
IntegerDigits[10,2]
Out[]=
{1,0,1,0}
In[]:=
Boole[BooleanTable[BooleanCountingFunction[{{1,3}},5]]]
Out[]=
{0,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0}
In[]:=
CellularAutomaton[{10,{2,1},2}][#][[3]]&/@Tuples[{1,0},5]
Out[]=
{0,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0}
In[]:=
BooleanMinimize[BooleanCountingFunction[{{1,3}},5][a1,a2,a3,a4,a5]]
Out[]=
(a1&&a2&&a3&&!a4&&!a5)||(a1&&a2&&!a3&&a4&&!a5)||(a1&&a2&&!a3&&!a4&&a5)||(a1&&!a2&&a3&&a4&&!a5)||(a1&&!a2&&a3&&!a4&&a5)||(a1&&!a2&&!a3&&a4&&a5)||(a1&&!a2&&!a3&&!a4&&!a5)||(!a1&&a2&&a3&&a4&&!a5)||(!a1&&a2&&a3&&!a4&&a5)||(!a1&&a2&&!a3&&a4&&a5)||(!a1&&a2&&!a3&&!a4&&!a5)||(!a1&&!a2&&a3&&a4&&a5)||(!a1&&!a2&&a3&&!a4&&!a5)||(!a1&&!a2&&!a3&&a4&&!a5)||(!a1&&!a2&&!a3&&!a4&&a5)
In[]:=
BooleanConvert[%,"Nand"]
Out[]=
(a1a2a3!a4!a5)(a1a2!a3a4!a5)(a1a2!a3!a4a5)(a1!a2a3a4!a5)(a1!a2a3!a4a5)(a1!a2!a3a4a5)(a1!a2!a3!a4!a5)(!a1a2a3a4!a5)(!a1a2a3!a4a5)(!a1a2!a3a4a5)(!a1a2!a3!a4!a5)(!a1!a2a3a4a5)(!a1!a2a3!a4!a5)(!a1!a2!a3a4!a5)(!a1!a2!a3!a4a5)
In[]:=
BooleanConvert[BooleanCountingFunction[{{1,3}},5][a1,a2,a3,a4,a5],"ANF"]
Out[]=
a1a2a3a4a5(a1&&a2&&a3&&a4&&a5)
In[]:=
Boole[BooleanTable[BooleanConvert[BooleanCountingFunction[{{1,3}},5],"ANF"]]]
Out[]=
{0,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0}
In[]:=
InputForm[%124]
Out[]//InputForm=
Xor[a1, a2, a3, a4, a5, a1 && a2 && a3 && a4 && a5]
In[]:=
BooleanConvert[BooleanCountingFunction[{{1,3}},5][a1,a2,a3,a4,a5],"IF"]
Out[]=
If[a1,If[a2,If[a3,If[a4,False,If[a5,False,True]],If[a4,If[a5,False,True],If[a5,True,False]]],If[a3,If[a4,If[a5,False,True],If[a5,True,False]],If[a4,If[a5,True,False],If[a5,False,True]]]],If[a2,If[a3,If[a4,If[a5,False,True],If[a5,True,False]],If[a4,If[a5,True,False],If[a5,False,True]]],If[a3,If[a4,If[a5,True,False],If[a5,False,True]],If[a4,If[a5,False,True],If[a5,True,False]]]]]
In[]:=
BooleanConvert[BooleanCountingFunction[{{1,3}},5][a1,a2,a3,a4,a5],"BFF"]
Out[]=
BooleanFunction
Number of variables: 5
Function index: 376007062
[a1,a2,a3,a4,a5]
In[]:=
BooleanConvert[BooleanCountingFunction[{{1,3}},5][a1,a2,a3,a4,a5],"BDT"]
Out[]=
(a1&&!((a2&&((a3&&(a4||(!a4&&a5)))||(!a3&&((a4&&a5)||(!a4&&!a5)))))||(!a2&&((a3&&((a4&&a5)||(!a4&&!a5)))||(!a3&&!((a4&&a5)||(!a4&&!a5)))))))||(!a1&&!((a2&&((a3&&((a4&&a5)||(!a4&&!a5)))||(!a3&&!((a4&&a5)||(!a4&&!a5)))))||(!a2&&!((a3&&((a4&&a5)||(!a4&&!a5)))||(!a3&&!((a4&&a5)||(!a4&&!a5)))))))
In[]:=
BooleanConvert[BooleanCountingFunction[{{1,3}},5][a1,a2,a3,a4,a5],"ESOP"]
Out[]=
(a1&&a2&&a3&&!a4&&!a5)(a1&&a2&&!a3&&a4&&!a5)(a1&&a2&&!a3&&!a4&&a5)(a1&&!a2&&a3&&a4&&!a5)(a1&&!a2&&a3&&!a4&&a5)(a1&&!a2&&!a3&&a4&&a5)(a1&&!a2&&!a3&&!a4&&!a5)(!a1&&a2&&a3&&a4&&!a5)(!a1&&a2&&a3&&!a4&&a5)(!a1&&a2&&!a3&&a4&&a5)(!a1&&a2&&!a3&&!a4&&!a5)(!a1&&!a2&&a3&&a4&&a5)(!a1&&!a2&&a3&&!a4&&!a5)(!a1&&!a2&&!a3&&a4&&!a5)(!a1&&!a2&&!a3&&!a4&&a5)
In[]:=
BooleanConvert[#,"ANF"]&/@NestList[BooleanCountingFunction[{{1,3}},5]@@@Partition[#,5,1]&,Table[a[i],{i,-2,2}],2]
Out[]=
{{a[-2],a[-1],a[0],a[1],a[2]},{a[-2]a[-1]a[0]a[1]a[2](a[-2]&&a[-1]&&a[0]&&a[1]&&a[2])},{}}
In[]:=
BooleanConvert[#,"ANF"]&/@NestList[BooleanCountingFunction[{{1,3}},5]@@@Partition[Flatten@#,5,1]&,Table[a[i],{i,-4,4}],3]
Out[]=
In[]:=
Count[#,a[_],Infinity]&/@%216
Out[]=
{9,50,716,0}
In[]:=
Count[#,a[_],Infinity]&/@(BooleanConvert[#,"ANF"]&/@NestList[BooleanCountingFunction[{{1,3}},5]@@@Partition[Flatten@#,5,1]&,Table[a[i],{i,-5,5}],4])
Out[]=
{11,70,2148,0,0}
In[]:=
BooleanCountingFunction[{{1,3}},5]@@Table[a[i],{i,-3,3}]
Out[]=
BooleanCountingFunction[{{1,3}},5][a[-3],a[-2],a[-1],a[0],a[1]]
In[]:=
ArrayPlot[CellularAutomaton[{10,{2,1},2},{{1},0},{600,{-600,600}}]]
Out[]=
In[]:=
ArrayPlot[CellularAutomaton[{10,{2,1},2},{{1},0},{{1,600,2},{-600,600,2}}]]
Out[]=
In[]:=
ArrayPlot[CellularAutomaton[{10,{2,1},2},{{1},0},{{1,1200,2},{-1200,1200,2}}]]
Out[]=
In[]:=
ArrayPlot[CellularAutomaton[{376007062,2,2},{{1},0},{{1,1200,2},{-1200,1200,2}}]]
Out[]=
More than one initial 1:

code 22

Block Simulation

Look for possible block emulations....

Finding Nested Examples

Finite size

Symmetric states only:

Side repetition

Could decorate with actual sequences...

Center Column

Center Column

Block entropies

Random

Repeating Blocks

Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.