Rule array bottom row of bits
How do we get probabilities?
NestList[Drop[Rest[#],XXXX],Mod[Total[#[[{-3,-7,-10}]]],2]&,CenterArray[{1},10],5]
ArrayPlot[ReplacePart[Table[0,10],i->1]
In[]:=
data=Table[UnitVector[10,Floor[1+9(1+Sin[x/200*2Pi*4])/2+1/2]],{x,0,99}];
In[]:=
ArrayPlot[Transpose[data],Mesh->True]
Out[]=
In[]:=
randomTransformerLayer[inDimensions_Integer,outDimensions_Integer,lookbackRange_Integer,nFunctions_Integer]:=Table[{RandomChoice[Range[nFunctions]],{{-RandomInteger[{1,lookbackRange}],RandomInteger[{1,inDimensions}]},{-RandomInteger[{1,lookbackRange}],RandomInteger[{1,inDimensions}]}}},outDimensions]
In[]:=
transformer=randomTransformerLayer[10,10,10,2]
Out[]=
{{2,{{-8,1},{-7,6}}},{2,{{-6,3},{-1,9}}},{2,{{-10,5},{-2,7}}},{2,{{-4,1},{-4,8}}},{2,{{-7,1},{-2,2}}},{1,{{-9,7},{-2,4}}},{1,{{-4,2},{-9,4}}},{2,{{-4,8},{-8,2}}},{1,{{-9,6},{-6,6}}},{1,{{-4,9},{-1,8}}}}
In[]:=
transformer={{1,{{-1,1},{-1,2}}}}
Out[]=
{{1,{{-1,1},{-1,2}}}}
In[]:=
With[{inDimensions=10,outDimensions=10,lookbackRange=10},Graphics[{EdgeForm[Black],FaceForm[None],Table[Rectangle[{i,j},{i+1,j+1}],{i,lookbackRange},{j,inDimensions}],Table[With[{el=transformer[[i]]},Table[{Line[{{(lookbackRange+First[c])+1+1/2,Last[c]+1/2},{outDimensions,inDimensions/2-outDimensions/2+i}}],FaceForm[White],Disk[{(lookbackRange+First[c])+1+1/2,Last[c]+1/2},0.1],Disk[{outDimensions,inDimensions/2-outDimensions/2+i},0.1]},{c,Last[el]}]],{i,Length[transformer]}]}]]
Out[]=
Window size = 6 or so ...
Show a learning sequence .... [ each step moving wires randomly ]
Use hexagons for And, Xor
In[]:=
data=Table[UnitVector[10,Floor[1+9(1+Sin[x/200*2Pi*4])/2+1/2]],{x,0,50}];
In[]:=
ArrayPlot[Transpose[data],Mesh->True]
Out[]=
In[]:=
data=Table[UnitVector[10,Ceiling[1+9(1+Sin[x/200*2Pi*4]+Sin[Sqrt[2]x/200*2Pi*4])/4+1/2]],{x,0,99}];
In[]:=
ArrayPlot[Transpose[data],Mesh->True]
Out[]=