{3,1,2}
{3,1,2}
In[]:=
ListLinePlot[SortBy[#,First]&/@ReplaceAll[Map[VertexList,DecomposeGraphByTags[RecursiveFunctionCallGraph[Apply[Sequence,$ParametricFunctions["PlusTimesShift"]@@#],500],2]],F.[x_]y_:>{x,y}],Mesh->All]&[{3,1,2}]
Out[]=
In[]:=
ListPlot[SortBy[#,First]&/@ReplaceAll[Map[VertexList,DecomposeGraphByTags[RecursiveFunctionCallGraph[Apply[Sequence,$ParametricFunctions["PlusTimesShift"]@@#],Range[20]],2]],F.[x_]y_:>{x,y}],Mesh->All,Filling->Axis]&[{3,1,2}]
Out[]=
In[]:=
RecursiveFunctionCallGraph[Apply[Sequence,$ParametricFunctions["PlusTimesShift"]@@{3,1,2}],Range[20]]
Out[]=
In[]:=
DecomposeGraphByTags[RecursiveFunctionCallGraph[Apply[Sequence,$ParametricFunctions["PlusTimesShift"]@@{3,1,2}],Range[20]]]
Out[]=
1
,
,2
,
,
,
In[]:=
ListLinePlot[SortBy[#,First]&/@ReplaceAll[Map[VertexList,DecomposeGraphByTags[RecursiveFunctionCallGraph[Apply[Sequence,$ParametricFunctions["PlusTimesShift"]@@#],5000],2]],F.[x_]y_:>{x,y}]]&[{3,1,2}]
Out[]=
In[]:=
Last[DecomposeGraphByTags[RecursiveFunctionCallGraph[Apply[Sequence,$ParametricFunctions["PlusTimesShift"]@@{3,1,2}],Range[300]],2]]
This is part of the infinite tree:
What about initial conditions at different points?
What about initial conditions at different points?
{1,1,2}
{1,1,2}
[ When does the function exist ? ]
[ When does the function exist ? ]
{3,1,1} TimesTimesShift ××-
{3,1,1} TimesTimesShift ××-
[ which negative values does this reach? ]
[ which negative values does this reach? ]
f[n] = n - f[f[n - 2]]
f[n] = n - f[f[n - 2]]
1 case....
1 case....
2 case ....
2 case ....
These are for the inner f[ ]
f[n] = n - f[f[n - 3]]
f[n] = n - f[f[n - 3]]