In[]:=
FindEquationalProof[p·q==q·p,"WolframAxioms"]
Out[]=
ProofObject
In[]:=
FindEquationalProof[p·q==q·p,"WolframAxioms"]["TokenEventProofGraph","TokenLabeling"->False,VertexSize->{{"Event",__}.5,r:HoldForm[_Equal]:>.25Sqrt@LeafCount[r]},AspectRatio2,ImageSizeScaled[.4]]
Out[]=
a.·a. a.·((a.·a.)·a.) is roughly in the middle, and has lots of outgoing branches
Also work out BetweennessCentrality etc. for lemmas.....
In[]:=
VertexCount[%]
Out[]=
201
In[]:=
VertexOutDegree
Out[]=
{1,5,7,1,1,2,1,8,1,4,1,1,29,1,5,1,1,1,3,1,1,7,1,1,8,1,1,1,1,1,1,2,2,1,2,4,1,1,1,1,1,1,1,1,1,2,1,1,1,3,4,1,2,1,1,1,3,1,1,1,1,1,1,1,1,0,2,1,1,1,1,1,4,3,1,1,1,1,1,1,1,2,1,1,3,1,4,4,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
In[]:=
FindEquationalProof[p·q==q·p,"WolframAxioms"]["ProofGraph"]
Out[]=
In[]:=
VertexCount[%]
Out[]=
102
This is pure events without lemmas
In[]:=
VertexList
ATP Systems
ATP Systems
Proof graphics
Proof graphics
Red piece is like an inflated axiom ... that proves certain useful, derived theorems that can be used as more efficient axioms
Reverse Proving of Axiom from Lemmas
Reverse Proving of Axiom from Lemmas