WOLFRAM NOTEBOOK

Proof Paths

Withg=
[]
TwoWayRuleNestGraph
[x_y_<->(y_x_)y_,(ab)a,5,GraphLayout"SpringElectricalEmbedding",VertexShapeFunctionAutomatic,ImageSizeScaled[0.8`]],HighlightGraphg,StylePathGraph[FindShortestPath[g,(a((ba)(ab)))a,ba],DirectedEdges->True],
[]
MetamathematicsStyleData
["ProofPathStyle"]
In[]:=
[]
TwoWayRuleNestGraph
[((a_·b_)·c_)·(a_·((a_·c_)·a_))<->c_,a·b,2,GraphLayout"SpringElectricalEmbedding",VertexShapeFunctionAutomatic]
Out[]=
In[]:=
[]
TwoWayRuleNestGraph
[((a_·b_)·c_)·(a_·((a_·c_)·a_))<->c_,a·b,3,GraphLayout"SpringElectricalEmbedding",VertexShapeFunctionAutomatic]
Out[]=
In[]:=
[]
TwoWayRuleNestGraph
[((a_·b_)·c_)·(a_·((a_·c_)·a_))<->c_,a·a,3,GraphLayout"SpringElectricalEmbedding",VertexShapeFunctionAutomatic]
Out[]=
In[]:=
[]
TwoWayRuleNestGraph
[((a_·b_)·c_)·(a_·((a_·c_)·a_))<->c_,a,3,GraphLayout"SpringElectricalEmbedding",VertexShapeFunctionAutomatic]
Out[]=
In[]:=
TakeSmallestBy[VertexList[%],LeafCount,5]
Out[]=
In[]:=
[]
TwoWayRuleNestGraph
[((a_·b_)·c_)·(a_·((a_·c_)·a_))<->c_,a·a,1,GraphLayout"SpringElectricalEmbedding"]
Out[]=
S23:
In[]:=
[]
TwoWayRuleNestGraph
[a_·a_a_·((a_·a_)·a_),a·a,2,GraphLayout"SpringElectricalEmbedding"]
Out[]=
In[]:=
[]
TwoWayRuleNestGraph
[a_·a_a_·((a_·a_)·a_),a·a,3,GraphLayout"SpringElectricalEmbedding"]
Out[]=
In[]:=
[]
TwoWayRuleNestGraph
[a_·a_a_·((a_·a_)·a_),a·a,4,GraphLayout"SpringElectricalEmbedding"]
Out[]=
In[]:=
[]
TwoWayRuleNestGraph
[a_·a_a_·((a_·a_)·a_),a·a,5,GraphLayout"SpringElectricalEmbedding",VertexShapeFunction->Automatic]
Out[]=

Notation

In[]:=
Text[Grid[({TraditionalForm/@(#/.Xnor->Equal),TraditionalForm[BooleanConvert[ReleaseHold[#],"BinaryNAND"]/.Nand->CenterDot]})&/@{HoldForm[And][p,q],HoldForm[Or][p,q],HoldForm[Not][p],HoldForm[Implies][p,q],HoldForm[Xnor][p,q],HoldForm[Xor][p,q]},Frame->All,Alignment->{{Left,Center}}]]
Out[]=
In[]:=
BooleanConvert[And[p,q],"BinaryNAND"]/.Nand->CenterDot
Out[]=
(p·(p·p))·(p·q)
In[]:=
AxiomaticTheory["WolframAxioms"]

Proof Graph Subgraphs

Popular Theorems

Common Core

What is this a·(a·(b·c)) b·(b·(a·c)) . Does it have a name in any algebraic theory?
Could it be process equivalence in concurrency theory

Adding Simple Lemmas

Entailment Cone

[ overnight ]

Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.