47 steps wm2645wm2645 signature 23→33 rule {{{1, 1, 2}, {3, 4, 5}} -> {{2, 2, 6}, {6, 4, 5}, {1, 5, 7}}} {{{1, 1, 2}, {3, 4, 5}} -> {{2, 2, 6}, {6, 4, 5}, {1, 5, 7}}}
make editable copy download notebook Basic EvolutionBasic evolution:[◼]WolframModel[{{{1,1,2},{3,4,5}}{{2,2,6},{6,4,5},{1,5,7}}},{{1,1,1},{1,1,1}},6,"StatesPlotsList"],,,,,,Event-by-event evolution:[◼]WolframModel[{{{1,1,2},{3,4,5}}{{2,2,6},{6,4,5},{1,5,7}}},{{1,1,1},{1,1,1}},<|"MaxEvents"6|>,"EventsStatesPlotsList"],,,,,,Vertex and edge counts:{vertexCountList,edgeCountList}=[◼]WolframModel[{{{1,1,2},{3,4,5}}{{2,2,6},{6,4,5},{1,5,7}}},{{1,1,1},{1,1,1}},50,{"VertexCountList","EdgeCountList"}];ListLogPlot{vertexCountList,edgeCountList},verticesedgesSymbolic expression for vertex count:FindSequenceFunction[vertexCountList,t]DifferenceRootFunction{y.,n.},-268368+123456n.-9062n.-60243n.+6424n.-(-8+n.)(-2+n.)7083-3076n.+3132n.y.[n.]+(-3+n.)-57376+32510n.-56872n.+3133n.y.[1+n.]0,y.[1]1,y.[2]3,y.[3]5,y.[4]9[t]Symbolic expression for edge count:FindSequenceFunction[edgeCountList,t]DifferenceRootFunction{y.,n.},2+4n.+(4-n.)y.[n.]+(-6+n.)y.[1+n.]0,y.[1]2,y.[2]3,y.[3]4,y.[4]6,y.[5]9,y.[6]13,y.[7]17[t]Result after 47 generations:WolframModel[]["FinalStatePlot"]Causal GraphCausal graph:WolframModel[]"CausalGraph",Rule[]Layered rendering:WolframModel[]["LayeredCausalGraph"]Causal graph distance matrix:MatrixPlotTransposeGraphDistanceMatrixWolframModel[]["CausalGraph"],Final State PropertiesHypergraph adjacency matrix:MatrixPlotAdjacencyMatrix@CatenateMapUndirectedEdge@@@Subsets[#,{2}]&,WolframModel[]["FinalState"],Vertex degree distribution:HistogramValuesCountsCatenateUnion/@WolframModel[]["FinalState"],Neighborhood volumes (ignoring directedness of connections):volumes=[◼]RaggedMeanAroundValues[◼]HypergraphNeighborhoodVolumesWolframModel[]["FinalState"],All,Automatic;ListLogLogPlotvolumes,Effective dimension versus radius:ListLinePlot[◼]LogDifferences[volumes],Successive neighborhood balls around a random vertex: [◼]HypergraphNeighborhoodsWolframModel[]["FinalState"],4,,,Distance matrix:distanceMatrix=GraphDistanceMatrixUndirectedGraph[◼]HypergraphToGraphWolframModel[]["FinalState"];MatrixPlotExp[-(distanceMatrix/.0None)],Distribution of distances in the graph:HistogramFlatten[distanceMatrix],Spreading of EffectsCausal graph adjacency matrix:MatrixPlotAdjacencyMatrixWolframModel[]["CausalGraph"],Neighborhood volumes in causal graph:ListLogLogPlotValues[◼]GraphNeighborhoodVolumesWolframModel[]["CausalGraph"],{1},Other Evolution OrdersRandom evolutions:[◼]WolframModel[{{{1,1,2},{3,4,5}}{{2,2,6},{6,4,5},{1,5,7}}},{{1,1,1},{1,1,1}},<|"MaxEvents"179|>,"FinalStatePlot","EventOrderingFunction""Random"][◼]WolframModel[{{{1,1,2},{3,4,5}}{{2,2,6},{6,4,5},{1,5,7}}},{{1,1,1},{1,1,1}},MaxEvents179,FinalStatePlot,EventOrderingFunctionRandom]Different deterministic evolution orders:[◼]WolframModel[{{{1,1,2},{3,4,5}}{{2,2,6},{6,4,5},{1,5,7}}},{{1,1,1},{1,1,1}},<|"MaxEvents"179|>,"EventOrderingFunction"{#,"LeastRecentEdge","RuleOrdering","RuleIndex"}]["FinalStatePlot",PlotLabel#]&/@{"OldestEdge","LeastOldEdge","LeastRecentEdge","NewestEdge","RuleOrdering","ReverseRuleOrdering"}[◼]WolframModel[{{{1,1,2},{3,4,5}}{{2,2,6},{6,4,5},{1,5,7}}},{{1,1,1},{1,1,1}},MaxEvents179,EventOrderingFunction{OldestEdge,LeastRecentEdge,RuleOrdering,RuleIndex}][FinalStatePlot,PlotLabelOldestEdge],[◼]WolframModel[{{{1,1,2},{3,4,5}}{{2,2,6},{6,4,5},{1,5,7}}},{{1,1,1},{1,1,1}},MaxEvents179,EventOrderingFunction{LeastOldEdge,LeastRecentEdge,RuleOrdering,RuleIndex}][FinalStatePlot,PlotLabelLeastOldEdge],[◼]WolframModel[{{{1,1,2},{3,4,5}}{{2,2,6},{6,4,5},{1,5,7}}},{{1,1,1},{1,1,1}},MaxEvents179,EventOrderingFunction{LeastRecentEdge,LeastRecentEdge,RuleOrdering,RuleIndex}][FinalStatePlot,PlotLabelLeastRecentEdge],[◼]WolframModel[{{{1,1,2},{3,4,5}}{{2,2,6},{6,4,5},{1,5,7}}},{{1,1,1},{1,1,1}},MaxEvents179,EventOrderingFunction{NewestEdge,LeastRecentEdge,RuleOrdering,RuleIndex}][FinalStatePlot,PlotLabelNewestEdge],[◼]WolframModel[{{{1,1,2},{3,4,5}}{{2,2,6},{6,4,5},{1,5,7}}},{{1,1,1},{1,1,1}},MaxEvents179,EventOrderingFunction{RuleOrdering,LeastRecentEdge,RuleOrdering,RuleIndex}][FinalStatePlot,PlotLabelRuleOrdering],[◼]WolframModel[{{{1,1,2},{3,4,5}}{{2,2,6},{6,4,5},{1,5,7}}},{{1,1,1},{1,1,1}},MaxEvents179,EventOrderingFunction{ReverseRuleOrdering,LeastRecentEdge,RuleOrdering,RuleIndex}][FinalStatePlot,PlotLabelReverseRuleOrdering]Graph Features of Statesgraph=[◼]HypergraphToGraphWolframModel[]["FinalState"];HistogramClosenessCentrality[graph],Cycle properties:EdgeCycleMatrix[UndirectedGraph[graph]]//MatrixPlotHistogram[Length/@FindFundamentalCycles[UndirectedGraph[graph]]]FindSpanningTree[UndirectedGraph[graph]]