50 steps wm3147wm3147 signature 23→43 rule {{{1, 1, 2}, {3, 4, 5}} -> {{3, 3, 6}, {1, 3, 2}, {7, 1, 3}, {7, 8, 2}}} {{{1, 1, 2}, {3, 4, 5}} -> {{3, 3, 6}, {1, 3, 2}, {7, 1, 3}, {7, 8, 2}}}
make editable copy download notebook Basic EvolutionBasic evolution:[◼]WolframModel[{{{1,1,2},{3,4,5}}{{3,3,6},{1,3,2},{7,1,3},{7,8,2}}},{{1,1,1},{1,1,1}},6,"StatesPlotsList"],,,,,,Event-by-event evolution:[◼]WolframModel[{{{1,1,2},{3,4,5}}{{3,3,6},{1,3,2},{7,1,3},{7,8,2}}},{{1,1,1},{1,1,1}},<|"MaxEvents"6|>,"EventsStatesPlotsList"],,,,,,Vertex and edge counts:{vertexCountList,edgeCountList}=[◼]WolframModel[{{{1,1,2},{3,4,5}}{{3,3,6},{1,3,2},{7,1,3},{7,8,2}}},{{1,1,1},{1,1,1}},60,{"VertexCountList","EdgeCountList"}];ListLogPlot{vertexCountList,edgeCountList},verticesedgesSymbolic expression for vertex count:FindSequenceFunction[vertexCountList,t]DifferenceRootFunction{y.,n.},3-14n.+y.[n.]+y.[1+n.]+y.[2+n.]0,y.[1]1,y.[2]4,y.[3]7,y.[4]12,y.[5]17,y.[6]23[t]Symbolic expression for edge count:FindSequenceFunction[edgeCountList,t]DifferenceRootFunction{y.,n.},6+(2-n.)y.[n.]+(-3+n.)y.[1+n.]0,y.[1]2,y.[2]4,y.[3]6,y.[4]10[t]Result after 50 generations:WolframModel[]["FinalStatePlot"]Causal GraphCausal graph:WolframModel[]"CausalGraph",Rule[]Layered rendering:WolframModel[]["LayeredCausalGraph"]Causal graph distance matrix:MatrixPlotTransposeGraphDistanceMatrixWolframModel[]["CausalGraph"],Final State PropertiesHypergraph adjacency matrix:MatrixPlotAdjacencyMatrix@CatenateMapUndirectedEdge@@@Subsets[#,{2}]&,WolframModel[]["FinalState"],Vertex degree distribution:HistogramValuesCountsCatenateUnion/@WolframModel[]["FinalState"],Neighborhood volumes (ignoring directedness of connections):volumes=[◼]RaggedMeanAroundValues[◼]HypergraphNeighborhoodVolumesWolframModel[]["FinalState"],All,Automatic;ListLogLogPlotvolumes,Effective dimension versus radius:ListLinePlot[◼]LogDifferences[volumes],Successive neighborhood balls around a random vertex: [◼]HypergraphNeighborhoodsWolframModel[]["FinalState"],4,,,Distance matrix:distanceMatrix=GraphDistanceMatrixUndirectedGraph[◼]HypergraphToGraphWolframModel[]["FinalState"];MatrixPlotExp[-(distanceMatrix/.0None)],Distribution of distances in the graph:HistogramFlatten[distanceMatrix],Spreading of EffectsCausal graph adjacency matrix:MatrixPlotAdjacencyMatrixWolframModel[]["CausalGraph"],Neighborhood volumes in causal graph:ListLogLogPlotValues[◼]GraphNeighborhoodVolumesWolframModel[]["CausalGraph"],{1},Other Evolution OrdersRandom evolutions:[◼]WolframModel[{{{1,1,2},{3,4,5}}{{3,3,6},{1,3,2},{7,1,3},{7,8,2}}},{{1,1,1},{1,1,1}},<|"MaxEvents"98|>,"FinalStatePlot","EventOrderingFunction""Random"][◼]WolframModel[{{{1,1,2},{3,4,5}}{{3,3,6},{1,3,2},{7,1,3},{7,8,2}}},{{1,1,1},{1,1,1}},MaxEvents98,FinalStatePlot,EventOrderingFunctionRandom]Different deterministic evolution orders:[◼]WolframModel[{{{1,1,2},{3,4,5}}{{3,3,6},{1,3,2},{7,1,3},{7,8,2}}},{{1,1,1},{1,1,1}},<|"MaxEvents"98|>,"EventOrderingFunction"{#,"LeastRecentEdge","RuleOrdering","RuleIndex"}]["FinalStatePlot",PlotLabel#]&/@{"OldestEdge","LeastOldEdge","LeastRecentEdge","NewestEdge","RuleOrdering","ReverseRuleOrdering"}[◼]WolframModel[{{{1,1,2},{3,4,5}}{{3,3,6},{1,3,2},{7,1,3},{7,8,2}}},{{1,1,1},{1,1,1}},MaxEvents98,EventOrderingFunction{OldestEdge,LeastRecentEdge,RuleOrdering,RuleIndex}][FinalStatePlot,PlotLabelOldestEdge],[◼]WolframModel[{{{1,1,2},{3,4,5}}{{3,3,6},{1,3,2},{7,1,3},{7,8,2}}},{{1,1,1},{1,1,1}},MaxEvents98,EventOrderingFunction{LeastOldEdge,LeastRecentEdge,RuleOrdering,RuleIndex}][FinalStatePlot,PlotLabelLeastOldEdge],[◼]WolframModel[{{{1,1,2},{3,4,5}}{{3,3,6},{1,3,2},{7,1,3},{7,8,2}}},{{1,1,1},{1,1,1}},MaxEvents98,EventOrderingFunction{LeastRecentEdge,LeastRecentEdge,RuleOrdering,RuleIndex}][FinalStatePlot,PlotLabelLeastRecentEdge],[◼]WolframModel[{{{1,1,2},{3,4,5}}{{3,3,6},{1,3,2},{7,1,3},{7,8,2}}},{{1,1,1},{1,1,1}},MaxEvents98,EventOrderingFunction{NewestEdge,LeastRecentEdge,RuleOrdering,RuleIndex}][FinalStatePlot,PlotLabelNewestEdge],[◼]WolframModel[{{{1,1,2},{3,4,5}}{{3,3,6},{1,3,2},{7,1,3},{7,8,2}}},{{1,1,1},{1,1,1}},MaxEvents98,EventOrderingFunction{RuleOrdering,LeastRecentEdge,RuleOrdering,RuleIndex}][FinalStatePlot,PlotLabelRuleOrdering],[◼]WolframModel[{{{1,1,2},{3,4,5}}{{3,3,6},{1,3,2},{7,1,3},{7,8,2}}},{{1,1,1},{1,1,1}},MaxEvents98,EventOrderingFunction{ReverseRuleOrdering,LeastRecentEdge,RuleOrdering,RuleIndex}][FinalStatePlot,PlotLabelReverseRuleOrdering]Graph Features of Statesgraph=[◼]HypergraphToGraphWolframModel[]["FinalState"];HistogramClosenessCentrality[graph],Cycle properties:EdgeCycleMatrix[UndirectedGraph[graph]]//MatrixPlotHistogram[Length/@FindFundamentalCycles[UndirectedGraph[graph]]]FindSpanningTree[UndirectedGraph[graph]]