102 steps wm7835wm7835 signature 23→33 rule {{{1, 2, 1}, {3, 2, 4}} -> {{3, 1, 3}, {2, 5, 1}, {5, 4, 2}}} {{{1, 2, 1}, {3, 2, 4}} -> {{3, 1, 3}, {2, 5, 1}, {5, 4, 2}}}
make editable copy download notebook Basic EvolutionBasic evolution:[◼]WolframModel[{{{1,2,1},{3,2,4}}{{3,1,3},{2,5,1},{5,4,2}}},{{1,1,1},{1,1,1}},6,"StatesPlotsList"],,,,,,Event-by-event evolution:[◼]WolframModel[{{{1,2,1},{3,2,4}}{{3,1,3},{2,5,1},{5,4,2}}},{{1,1,1},{1,1,1}},<|"MaxEvents"6|>,"EventsStatesPlotsList"],,,,,,Vertex and edge counts:{vertexCountList,edgeCountList}=[◼]WolframModel[{{{1,2,1},{3,2,4}}{{3,1,3},{2,5,1},{5,4,2}}},{{1,1,1},{1,1,1}},500,{"VertexCountList","EdgeCountList"}];ListLogPlot{vertexCountList,edgeCountList},verticesedgesSymbolic expression for vertex count:FindSequenceFunction[vertexCountList,t]DifferenceRootFunction{y.,n.},-23952+12700n.-23302n.+1403n.+24n.+-20976+14150n.-36652n.+4303n.-194n.y.[n.]+(-9+n.)-2664+1454n.-2792n.+193n.y.[1+n.]0,y.[1]1,y.[2]2,y.[3]3,y.[4]4,y.[5]5,y.[6]7,y.[7]8,y.[8]9,y.[9]10,y.[10]12[t]Symbolic expression for edge count:FindSequenceFunction[edgeCountList,t]DifferenceRootFunction{y.,n.},-26952+14300n.-26302n.+1603n.+24n.+-20976+14150n.-36652n.+4303n.-194n.y.[n.]+(-9+n.)-2664+1454n.-2792n.+193n.y.[1+n.]0,y.[1]2,y.[2]3,y.[3]4,y.[4]5,y.[5]6,y.[6]8,y.[7]9,y.[8]10,y.[9]11,y.[10]13[t]Result after 102 generations:WolframModel[]["FinalStatePlot"]Causal GraphCausal graph:WolframModel[]"CausalGraph",Rule[]Layered rendering:WolframModel[]["LayeredCausalGraph"]Causal graph distance matrix:MatrixPlotTransposeGraphDistanceMatrixWolframModel[]["CausalGraph"],Final State PropertiesHypergraph adjacency matrix:MatrixPlotAdjacencyMatrix@CatenateMapUndirectedEdge@@@Subsets[#,{2}]&,WolframModel[]["FinalState"],Vertex degree distribution:HistogramValuesCountsCatenateUnion/@WolframModel[]["FinalState"],Neighborhood volumes (ignoring directedness of connections):volumes=[◼]RaggedMeanAroundValues[◼]HypergraphNeighborhoodVolumesWolframModel[]["FinalState"],All,Automatic;ListLogLogPlotvolumes,Effective dimension versus radius:ListLinePlot[◼]LogDifferences[volumes],Successive neighborhood balls around a random vertex: [◼]HypergraphNeighborhoodsWolframModel[]["FinalState"],4,,,Distance matrix:distanceMatrix=GraphDistanceMatrixUndirectedGraph[◼]HypergraphToGraphWolframModel[]["FinalState"];MatrixPlotExp[-(distanceMatrix/.0None)],Distribution of distances in the graph:HistogramFlatten[distanceMatrix],Spreading of EffectsCausal graph adjacency matrix:MatrixPlotAdjacencyMatrixWolframModel[]["CausalGraph"],Neighborhood volumes in causal graph:ListLogLogPlotValues[◼]GraphNeighborhoodVolumesWolframModel[]["CausalGraph"],{1},Other Evolution OrdersRandom evolutions:[◼]WolframModel[{{{1,2,1},{3,2,4}}{{3,1,3},{2,5,1},{5,4,2}}},{{1,1,1},{1,1,1}},<|"MaxEvents"197|>,"FinalStatePlot","EventOrderingFunction""Random"]Different deterministic evolution orders:[◼]WolframModel[{{{1,2,1},{3,2,4}}{{3,1,3},{2,5,1},{5,4,2}}},{{1,1,1},{1,1,1}},<|"MaxEvents"197|>,"EventOrderingFunction"{#,"LeastRecentEdge","RuleOrdering","RuleIndex"}]["FinalStatePlot",PlotLabel#]&/@{"OldestEdge","LeastOldEdge","LeastRecentEdge","NewestEdge","RuleOrdering","ReverseRuleOrdering"},,,,,Graph Features of Statesgraph=[◼]HypergraphToGraphWolframModel[]["FinalState"];HistogramClosenessCentrality[graph],Cycle properties:EdgeCycleMatrix[UndirectedGraph[graph]]//MatrixPlotHistogram[Length/@FindFundamentalCycles[UndirectedGraph[graph]]]FindSpanningTree[UndirectedGraph[graph]]