In[]:=
gama=.7;Plot3D[-(x^2+y^2)-(4/(gamaPi^2))(Log[Cos[Pix/2]]+Log[Cos[Piy/2]]),{x,-1,1},{y,-1,1},ViewPoint{1,2,1},PlotPoints50,AxesLabel{"\!\(\*SubscriptBox[\"a\",\"1\"]\)"","\!\(\*SubscriptBox[\"a\",\"2\"]\)"","V"}]
a
1
a
2
In[]:=
In[22]:=sigma=16;b=4;r=45.92;Lorenz=NDSolve[{x1'[t]sigma(x2[t]-x1[t]),x2'[t]-x1[t]x3[t]+rx1[t]-x2[t],x3'[t]x1[t]x2[t]-bx3[t],y2'[t]-x1[t]y3[t]+rx1[t]-y2[t],y3'[t]x1[t]y2[t]-by3[t],x1[0]15,x2[0]20,x3[0]30,y2[0]10,y3[0]20},{x1,x2,x3,y2,y3},{t,0,100},MaxStepsInfinity];ParametricPlot3D[Evaluate[{x1[t],x2[t],x3[t]}/.Lorenz],{t,0,100},PlotPoints10000]ParametricPlot[Evaluate[{x3[t],y3[t]}/.Lorenz],{t,50,100},PlotPoints10000,AxesLabel{""SubscriptBox[x,3]"""(t)",""SubscriptBox[y,3]"""(t)"}]
′
x1
′
x2
′
x3
′
y2
′
y3
′
x1
′
x2
Out[]=
′
x1
′
x2
′
x3
′
y2
′
y3
′
x1
′
x2
′
x1
′
x2
Out[]=
Manipulate[Plot[{1-ax,(x-1)/a},{x,0,2}],{a,0.01,1}]