WOLFRAM NOTEBOOK

Insert
Sample

Exploration of Noble Gases

Noble gases are located in the far right of the periodic table. They possess great stability and rarely react with other elements. Under standard conditions, they are all odorless, colorless, and monatomic gases.

General properties of noble gases

Generate the list of noble gases:
In[112]:=
class=EntityClass["Element","NobleGas"]
Out[112]=
noble gases
Find their abbreviations:
In[113]:=
entities=class["Entity"];abbs=class["Abbreviation"];
In[115]:=
Thread[entitiesabbs]
Out[115]=
helium
He,
neon
Ne,
argon
Ar,
krypton
Kr,
xenon
Xe,
radon
Rn,
oganesson
Og
Locate them in white in the periodic table:
In[122]:=
ColorData["Atoms","Image"]/.Thread[class["IconColor"]White]
Out[122]=
We consider a subset of noble gases for our analysis.
Construct a list of noble gases:
In[137]:=
noblegases=CanonicalName[entities][[1;;4]]
Out[137]=
{Helium,Neon,Argon,Krypton}
We analyze some of their properties:
Extract data using the Wolfram Language symbol ThermodynamicData:
In[140]:=
properties=DeleteMissing[ThermodynamicData[#]]&/@noblegases;
Construct an array of properties:
In[179]:=
data=Transpose[Join[{Keys[properties]1},Values/@properties]];
Display these properties in a grid:
In[173]:=
Grid[Prepend[data1;;6,data20],FrameAll]
Out[173]=
Name
helium
neon
argon
krypton
CriticalDensity
69.6412
kg/
3
m
481.915
kg/
3
m
535.6
kg/
3
m
909.208
kg/
3
m
CriticalEnthalpy
11869.8
J/kg
59461.
J/kg
-4331.55
J/kg
76278.5
J/kg
CriticalEntropy
2183.29
J/(kgK)
1502.21
J/(kgK)
2247.64
J/(kgK)
424.449
J/(kgK)
CriticalInternalEnergy
8619.35
J/kg
53902.7
J/kg
-13411.1
J/kg
70201.2
J/kg
CriticalPressure
227460.
Pa
2.6786×
6
10
Pa
4.863×
6
10
Pa
5.525×
6
10
Pa
CriticalTemperature
5.1953
K
44.4918
K
150.687
K
209.48
K
In[174]:=
Grid[Prepend[data7;;12,data20],FrameAll]
Out[174]=
Name
helium
neon
argon
krypton
Density
0.166317
kg/
3
m
0.838471
kg/
3
m
1.66182
kg/
3
m
3.49123
kg/
3
m
Enthalpy
1.52789×
6
10
J/kg
361621.
J/kg
152325.
J/kg
151069.
J/kg
Entropy
27879.3
J/(kgK)
5661.71
J/(kgK)
3864.12
J/(kgK)
1122.6
J/(kgK)
InternalEnergy
918658.
J/kg
240776.
J/kg
91353.2
J/kg
122046.
J/kg
IsobaricHeatCapacity
5192.99
J/(kgK)
1030.37
J/(kgK)
521.608
J/(kgK)
249.257
J/(kgK)
IsochoricHeatCapacity
3116.03
J/(kgK)
618.144
J/(kgK)
312.398
J/(kgK)
149.039
J/(kgK)
In[175]:=
Grid[Prepend[data13;;19,data20],FrameAll]
Out[175]=
Name
helium
neon
argon
krypton
MolarDensity
41.5522
mol/
3
m
41.5517
mol/
3
m
41.5996
mol/
3
m
41.6625
mol/
3
m
MolarEnthalpy
6115.52
J/mol
7297.15
J/mol
6085.1
J/mol
12659.3
J/mol
MolarEntropy
111.59
J/(Kmol)
114.248
J/(Kmol)
154.364
J/(Kmol)
94.0719
J/(Kmol)
MolarInternalEnergy
3677.02
J/mol
4858.62
J/mol
3649.38
J/mol
10227.2
J/mol
MolarIsobaricHeatCapacity
20.7855
J/(molK)
20.7918
J/(molK)
20.8372
J/(molK)
20.8872
J/(molK)
MolarIsochoricHeatCapacity
12.4722
J/(molK)
12.4735
J/(molK)
12.4797
J/(molK)
12.4892
J/(molK)
MolarSpecificVolume
0.0240661
3
m
/kg
0.0240664
3
m
/kg
0.0240387
3
m
/kg
0.0240024
3
m
/kg
In[176]:=
Grid[Prepend[data22;;25,data20],FrameAll]
Out[176]=
Name
helium
neon
argon
krypton
SoundSpeed
1007.86
m/s
448.922
m/s
318.959
m/s
220.072
m/s
SpecificVolume
6.01262
3
m
/kg
1.19265
3
m
/kg
0.60175
3
m
/kg
0.286432
3
m
/kg
ThermalConductivity
0.153505
W/(mK)
0.0475569
W/(mK)
0.0174963
W/(mK)
0.00922286
W/(mK)
TriplePointGasDensity
1.14551
kg/
3
m
4.44453
kg/
3
m
4.05458
kg/
3
m
6.57099
kg/
3
m
In[177]:=
Grid[Prepend[data26;;All,data20],FrameAll]
Out[177]=
Name
helium
neon
argon
krypton
TriplePointLiquidDensity
146.242
kg/
3
m
1252.28
kg/
3
m
1416.75
kg/
3
m
2446.90
kg/
3
m
TriplePointPressure
4856.5
Pa
43464.
Pa
68891.
Pa
73500.
Pa
TriplePointTemperature
2.1768
K
24.556
K
83.8058
K
115.775
K
Viscosity
0.0000196176
sPa
0.0000307712
sPa
0.0000223065
sPa
0.0000247551
sPa

Analysing density functions

Let us analyse the density of the noble gases with respect to pressure and temperature.
Construct the density data for a constant temperature of 50°C:
In[211]:=
densitydata=Transpose[{Quantity[1000Range[1,100,2],"Pascals"],ThermodynamicData[#,"Density",{"Temperature"Quantity[50,"DegreesCelsius"],"Pressure"Quantity[Range[1,100,2]1000,"Pascals"]}]}]&/@noblegases;
Plot the density function:
In[235]:=
ListLinePlot[densitydata,AxesLabel{"Pressure [Pa]","Density [kg/
3
m
]"},PlotLegendsnoblegases]
Out[235]=
Helium
Neon
Argon
Krypton
Let us do the same with a constant atmospheric pressure.
Construct the density data for a constant pressure of 20 Pa:
In[213]:=
densitydata2=Transpose[{Quantity[Range[100,400,10],"Kelvins"],ThermodynamicData[#,"Density",{"Pressure"Quantity[20,"Pascals"],"Temperature"Quantity[Range[100,400,10],"Kelvins"]}]}]&/@noblegases;
Plot the pressure function:
In[236]:=
ListLinePlot[densitydata2,AxesLabel{"Temperature [K]","Density [kg/
3
m
]"},PlotLegendsnoblegases]
Out[236]=
Helium
Neon
Argon
Krypton
The shapes of the density functions are similar. We can also see that they are continuous, which indicate that for the selected range of temperature, no phase transition happens.

Phase plotting

Let us build the phase plots of each noble gas.
Choose the pressure interval:
Create a phase plot for each noble gas:
Display these plots in a grid:

Phase plot analysing

Let us analyse the vapor-liquid phase boundary.
Construct the array of data near the vapor-liquid boundary with constant pressure:
Construct the array of data near the vapor-liquid boundary with constant temperature:
Display the data in a grid:
We can see discontinuities in the density functions for low temperatures. This is an indication of the process of vapor-liquid phase transition of the noble gases.
Further Explorations
Analysing of other kinds of gases like halogens
Analysing of other properties of substances
Authorship information
Andrey Krotkikh
6/21/2017
andrei.krotkih@gmail.com
Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.