Shockley-Queisser limit
Shockley-Queisser limit
The Shockley-Queisser limit is the upper theoretical limit for the efficiency of p-n junction solar cells. It plays an important role to estimate how far an experimental solar cell efficiency is from the maximum achievable theoretical efficiency.
◼
source: William Shockley and Hans J.Queisser, J.Appl.Phys.32, 510 (1961); doi : 10.1063/1.1736034
Physical model
Physical model
◼
Single cut-off frequency: for E ≥ hν effect otherwise no effect
◼
p-n junction solar cell is at = 0, surrounded by a blackbody at T =
T
C
T
s.
◼
Introduce finite and replace surrounding body at by radiation coming from the sun at a small solid angle .
T
C
T
S
ω
s
Ultimate efficiency hypothesis
Ultimate efficiency hypothesis
◼
EachphotonwithE>produces1atavoltageof=
hν
g
q
e
V
g
hν
g
q
e
Formula check for incident power
Formula check for incident power
In[20]:=
Remove[h,ν,Ts,κ,c]
In[21]:=
(2πh)ν
∞
∫
0
3
ν
exp-1
hν
κTs
2
c
Out[21]=
ConditionalExpression,Re>0
2
5
π
4
Ts
4
κ
15
2
c
3
h
h
Tsκ
Physical constants
Physical constants
◼
Planck’s constant
In[22]:=
h=QuantityMagnitude@UnitConvert[Quantity[1,"PlanckConstant"],"SIBase"]
Out[22]=
6.626070×
-34
10
◼
speed of light
In[23]:=
c=QuantityMagnitude@UnitConvert[Quantity[1,"SpeedOfLight"],"SIBase"]
Out[23]=
299792458
◼
Boltzmann constant
In[24]:=
κ=QuantityMagnitude@UnitConvert[Quantity[1,"BoltzmannConstant"],"SIBase"]
Out[24]=
1.38065×
-23
10
In[25]:=
qe=QuantityMagnitude@UnitConvert[Quantity[1,"ElementaryCharge"],"SIBase"]
Out[25]=
1.6021766×
-19
10
Black-body Radiation
Black-body Radiation
Built - in
Built - in
In[26]:=
<<BlackBodyRadiation`BlackBodyProfile[4000Kelvin,5000Kelvin,6000Kelvin,PlotRange{{0,2.0*10^-6},{0,1.1*10^14}},ImageSize400]
Out[27]=
User - made
User - made
Bν (T) is the spectral radiance (the power per unit solid angle and per unit of area normal to the propagation) density of frequency ν radiation per unit frequency at thermal equilibrium at temperature T.
In[28]:=
Remove[T,B]B[T_]:=;(*T=300;*)(*Plot[,{ν,1,10000},PlotRangeAll]*)Plot[{B[300],B[400]},{ν,0,10},AxesLabel{"f(Hz)","Intensity (W/)"}]
2h
3
ν
2
c
1
Exp-1
hν
κT
B
ν
13
10
13
10
3
m
Out[30]=
useful parameters for the calculation
useful parameters for the calculation
E
g
hν
g
V
g
x
g
E
g
κTs
x
c
Tc
Ts
Surrounding temperature
Surrounding temperature
In[31]:=
Ts=6000;
Calculation & Result
Calculation & Result
Output power from the solar cell
Output power from the solar cell
◼
Qs: # of frequency quanta greater than incident per unit time per unit area for black body radiation
v
g
In[173]:=
Qs=ν
2π
2
c
∞
∫
v
g
2
ν
exp-1
hν
κTs
Putting=x;
hν
κTs
In[32]:=
Qs[xg_]:=x
2π
2
c
3
κTs
h
∞
∫
xg
2
x
Exp[x]-1
Ps=
(2πh)ν
∞
∫
0
3
ν
exp-1
(hν)
κTs
2
c
after variable changed to x
In[33]:=
Ps=x
2π
2
c
3
h
4
(κTs)
∞
∫
0
3
x
Exp[x]-1
Out[33]=
7.3488×
7
10
◼
Ultimate efficiency function
In[34]:=
u[xg_]:=κTsxgQs[xg]/Ps(**);
Qs[xg]
Ps
◼
~44% maximum efficiency achievable
In[35]:=
u[2.2]//AbsoluteTiming
Out[35]=
{5.85332,0.438691}
As a function of xg
As a function of xg
In[37]:=
maxeffdata=Transpose[{Range[0,10,.5],100*u[#]&/@Range[0,10,.5]}];
In[38]:=
ListLinePlot[maxeffdata,PlotRangeAll,AxesLabel{"xg","% efficiency"}]
Out[38]=
As a function of bandgap
As a function of bandgap
◼
At the bandgap of 1.1 eV ~44% maximum efficiency achievable
◼
Radiative recombination & lifetime consideration.