Under Development
A collection of classical geometry in computable formats along with code and diagrams.
Computable Euclid
›
Euclid Book 5
›
Browse books
Euclid Book 1
Euclid Book 2
Euclid Book 3
Euclid Book 4
Euclid Book 5
Euclid Book 6
Euclid Book 13
Euclid Book 5 Proposition 11
Statement
I
f
t
w
o
r
a
t
i
o
s
a
r
e
e
q
u
a
l
t
o
a
t
h
i
r
d
(
A
B
C
D
E
F
G
H
,
I
J
K
L
E
F
G
H
)
,
t
h
e
n
t
h
e
y
a
r
e
e
q
u
a
l
t
o
e
a
c
h
o
t
h
e
r
(
A
B
C
D
I
J
K
L
)
.
Computational Explanation
G
e
o
m
e
t
r
i
c
S
c
e
n
e
{
{
A
.
,
B
.
,
C
.
,
D
.
,
E
.
,
F
.
,
G
.
,
H
.
,
I
.
,
J
.
,
K
.
,
L
.
}
,
{
a
.
,
b
.
,
c
.
,
d
.
,
e
.
,
f
.
}
}
,
S
t
y
l
e
[
L
i
n
e
[
{
A
.
,
B
.
}
]
,
R
e
d
]
,
S
t
y
l
e
[
L
i
n
e
[
{
C
.
,
D
.
}
]
,
R
e
d
]
,
S
t
y
l
e
[
L
i
n
e
[
{
E
.
,
F
.
}
]
,
B
l
u
e
]
,
S
t
y
l
e
[
L
i
n
e
[
{
G
.
,
H
.
}
]
,
B
l
u
e
]
,
S
t
y
l
e
[
L
i
n
e
[
{
I
.
,
J
.
}
]
,
G
r
e
e
n
]
,
S
t
y
l
e
[
L
i
n
e
[
{
K
.
,
L
.
}
]
,
G
r
e
e
n
]
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
a
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
D
.
]
b
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
E
.
,
F
.
]
e
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
G
.
,
H
.
]
f
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
I
.
,
J
.
]
c
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
K
.
,
L
.
]
d
.
,
a
.
b
.
e
.
f
.
,
c
.
d
.
e
.
f
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
D
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
I
.
,
J
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
K
.
,
L
.
]
,
a
.
b
.
c
.
d
.
C
o
n
c
l
u
s
i
o
n
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
D
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
I
.
,
J
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
K
.
,
L
.
]
Explanations
For, as
A
is to
B
, so let
C
be to
D
, and, as
C
is to
D
, so let
E
be to
F
; I say that, as
A
is to
B
, so is
E
to
F
.
For of
A
,
C
,
E
let equimultiples
G
,
H
,
K
be taken, and of
B
,
D
,
F
other, chance, equimultiples
L
,
M
,
N
.
Then since, as
A
is to
B
, so is
C
to
D
, and of
A
,
C
equimultiples
G
,
H
have been taken, and of
B
,
D
other, chance, equimultiples
L
,
M
, therefore, if
G
is in excess of
L
,
H
is also in excess of
M
, if equal, equal, and if less, less.
Again, since, as
C
is to
D
, so is
E
to
F
, and of
C
,
E
equimultiples
H
,
K
have been taken, and of
D
,
F
other, chance, equimultiples
M
,
N
, therefore, if
H
is in excess of
M
,
K
is also in excess of
N
, if equal, equal, and if less, less.
But we saw that, if
H
was in excess of
M
,
G
was also in excess of
L
; if equal, equal; and if less, less; so that, in addition, if
G
is in excess of
L
,
K
is also in excess of
N
, if equal, equal, and if less, less.
And
G
,
K
are equimultiples of
A
,
E
while
L
,
N
are other, chance, equimultiples of
B
,
F
; therefore, as
A
is to
B
, so is
E
to
F
.
Classes
Euclid's Elements
Theorems
Geometric Algebra
EuclidBook5