Under Development
A collection of classical geometry in computable formats along with code and diagrams.
Computable Euclid
›
Euclid Book 5
›
Browse books
Euclid Book 1
Euclid Book 2
Euclid Book 3
Euclid Book 4
Euclid Book 5
Euclid Book 6
Euclid Book 13
Euclid Book 5 Proposition 13
Statement
I
f
a
f
i
r
s
t
m
a
g
n
i
t
u
d
e
h
a
s
t
o
a
s
e
c
o
n
d
t
h
e
s
a
m
e
r
a
t
i
o
a
s
a
t
h
i
r
d
t
o
a
f
o
u
r
t
h
(
A
B
C
D
E
F
G
H
)
,
a
n
d
t
h
e
t
h
i
r
d
h
a
s
t
o
t
h
e
f
o
u
r
t
h
a
g
r
e
a
t
e
r
r
a
t
i
o
t
h
a
n
a
f
i
f
t
h
h
a
s
t
o
a
s
i
x
t
h
(
E
F
G
H
>
I
J
K
L
)
,
t
h
e
n
t
h
e
f
i
r
s
t
a
l
s
o
h
a
s
t
o
t
h
e
s
e
c
o
n
d
a
g
r
e
a
t
e
r
r
a
t
i
o
t
h
a
n
t
h
e
f
i
f
t
h
t
o
t
h
e
s
i
x
t
h
(
A
B
C
D
>
I
J
K
L
)
.
Computational Explanation
G
e
o
m
e
t
r
i
c
S
c
e
n
e
{
{
A
.
,
B
.
,
C
.
,
D
.
,
E
.
,
F
.
,
G
.
,
H
.
,
I
.
,
J
.
,
K
.
,
L
.
}
,
{
a
.
,
b
.
,
c
.
,
d
.
,
e
.
,
f
.
}
}
,
S
t
y
l
e
[
L
i
n
e
[
{
A
.
,
B
.
}
]
,
R
e
d
]
,
S
t
y
l
e
[
L
i
n
e
[
{
C
.
,
D
.
}
]
,
R
e
d
]
,
S
t
y
l
e
[
L
i
n
e
[
{
E
.
,
F
.
}
]
,
B
l
u
e
]
,
S
t
y
l
e
[
L
i
n
e
[
{
G
.
,
H
.
}
]
,
B
l
u
e
]
,
S
t
y
l
e
[
L
i
n
e
[
{
I
.
,
J
.
}
]
,
G
r
e
e
n
]
,
S
t
y
l
e
[
L
i
n
e
[
{
K
.
,
L
.
}
]
,
G
r
e
e
n
]
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
a
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
D
.
]
b
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
E
.
,
F
.
]
c
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
G
.
,
H
.
]
d
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
I
.
,
J
.
]
e
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
K
.
,
L
.
]
f
.
,
a
.
b
.
c
.
d
.
,
c
.
d
.
>
e
.
f
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
D
.
]
>
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
I
.
,
J
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
K
.
,
L
.
]
,
a
.
b
.
>
e
.
f
.
C
o
n
c
l
u
s
i
o
n
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
D
.
]
>
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
I
.
,
J
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
K
.
,
L
.
]
Explanations
For let a first magnitude
A
have to a second
B
the same ratio as a third
C
has to a fourth
D
, and let the third
C
have to the fourth
D
a greater ratio than a fifth
E
has to a sixth
F
; I say that the first
A
will also have to the second
B
a greater ratio than the fifth
E
to the sixth
F
.
For, since there are some equimultiples of
C
,
E
, and of
D
,
F
other, chance, equimultiples, such that the multiple of
C
is in excess of the multiple of
D
, while the multiple of
E
is not in excess of the multiple of
F
,
[
V
.
D
e
f
.
7
]
let them be taken, and let
G
,
H
be equimultiples of
C
,
E
, and
K
,
L
other, chance, equimultiples of
D
,
F
, so that
G
is in excess of
K
, but
H
is not in excess of
L
; and, whatever multiple
G
is of
C
, let
M
be also that multiple of
A
, and, whatever multiple
K
is of
D
, let
N
be also that multiple of
B
.
Now, since, as
A
is to
B
, so is
C
to
D
, and of
A
,
C
equimultiples
M
,
G
have been taken, and of
B
,
D
other, chance, equimultiples
N
,
K
, therefore, if
M
is in excess of
N
,
G
is also in excess of
K
, if equal, equal, and if less, less.
[
V
.
D
e
f
.
5
]
But
G
is in excess of
K
; therefore
M
is also in excess of
N
.
But
H
is not in excess of
L
; and
M
,
H
are equimultiples of
A
,
E
, and
N
,
L
other, chance, equimultiples of
B
,
F
; therefore
A
has to
B
a greater ratio than
E
has to
F
.
[
V
.
D
e
f
.
7
]
Classes
Euclid's Elements
Theorems
Geometric Algebra
EuclidBook5