Under Development
A collection of classical geometry in computable formats along with code and diagrams.
Computable Euclid
›
Euclid Book 5
›
Browse books
Euclid Book 1
Euclid Book 2
Euclid Book 3
Euclid Book 4
Euclid Book 5
Euclid Book 6
Euclid Book 13
Euclid Book 5 Proposition 15
Statement
I
f
t
w
o
m
a
g
n
i
t
u
d
e
s
a
r
e
e
q
u
i
m
u
l
t
i
p
l
e
s
o
f
t
w
o
o
t
h
e
r
s
(
A
B
3
C
D
,
E
F
3
G
H
)
,
t
h
e
n
t
h
e
f
i
r
s
t
t
w
o
h
a
v
e
t
h
e
s
a
m
e
r
a
t
i
o
a
s
t
h
e
l
a
t
t
e
r
t
w
o
(
A
B
E
F
C
D
G
H
)
.
Computational Explanation
G
e
o
m
e
t
r
i
c
S
c
e
n
e
{
{
A
.
,
B
.
,
C
.
,
D
.
,
E
.
,
F
.
,
G
.
,
H
.
}
,
{
a
.
,
b
.
}
}
,
{
S
t
y
l
e
[
L
i
n
e
[
{
A
.
,
B
.
}
]
,
R
e
d
]
,
S
t
y
l
e
[
L
i
n
e
[
{
C
.
,
D
.
}
]
,
R
e
d
]
,
S
t
y
l
e
[
L
i
n
e
[
{
E
.
,
F
.
}
]
,
B
l
u
e
]
,
S
t
y
l
e
[
L
i
n
e
[
{
G
.
,
H
.
}
]
,
B
l
u
e
]
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
3
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
D
.
]
3
a
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
E
.
,
F
.
]
3
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
G
.
,
H
.
]
3
b
.
}
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
E
.
,
F
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
D
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
G
.
,
H
.
]
,
3
a
.
3
b
.
a
.
b
.
C
o
n
c
l
u
s
i
o
n
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
E
.
,
F
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
D
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
G
.
,
H
.
]
Explanations
For let
A
B
be the same multiple of
C
that
D
E
is of
F
; I say that, as
C
is to
F
, so is
A
B
to
D
E
.
For, since
A
B
is the same multiple of
C
that
D
E
is of
F
, as many magnitudes as there are in
A
B
equal to
C
, so many are there also in
D
E
equal to
F
. Let
A
B
be divided into the magnitudes
A
G
,
G
H
,
H
B
equal to
C
, and
D
E
into the magnitudes
D
K
,
K
L
,
L
E
equal to
F
; then the multitude of the magnitudes
A
G
,
G
H
,
H
B
will be equal to the multitude of the magnitudes
D
K
,
K
L
,
L
E
.
And, since
A
G
.
G
H
,
H
B
are equal to one another, and
D
K
,
K
L
,
L
E
are also equal to one another, therefore, as
A
G
is to
D
K
, so is
G
H
to
K
L
, and
H
B
to
L
E
.
[
V
.
7
]
Therefore, as one of the antecedents is to one of the consequents, so will all the antecedents be to all the consequents;
[
V
.
1
2
]
therefore, as
A
G
is to
D
K
, so is
A
B
to
D
E
.
But
A
G
is equal to
C
and
D
K
to
F
; therefore, as
C
is to
F
, so is
A
B
to
D
E
.
Classes
Euclid's Elements
Theorems
Geometric Algebra
EuclidBook5