Under Development
A collection of classical geometry in computable formats along with code and diagrams.
Computable Euclid
›
Euclid Book 5
›
Browse books
Euclid Book 1
Euclid Book 2
Euclid Book 3
Euclid Book 4
Euclid Book 5
Euclid Book 6
Euclid Book 13
Euclid Book 5 Proposition 18
Statement
I
f
a
s
u
b
t
r
a
c
t
e
d
p
a
r
t
o
f
a
w
h
o
l
e
i
s
t
o
t
h
e
r
e
m
a
i
n
d
e
r
a
s
a
n
o
t
h
e
r
s
u
b
t
r
a
c
t
e
d
p
a
r
t
o
f
a
n
o
t
h
e
r
w
h
o
l
e
i
s
t
o
t
h
e
r
e
m
a
i
n
d
e
r
(
A
B
C
D
A
E
C
F
)
,
t
h
e
n
t
h
e
f
o
r
m
e
r
w
h
o
l
e
i
s
t
o
t
h
e
r
e
m
a
i
n
d
e
r
a
s
t
h
e
l
a
t
t
e
r
i
s
t
o
t
h
e
r
e
m
a
i
n
d
e
r
.
(
E
B
F
D
A
B
C
D
)
.
Computational Explanation
G
e
o
m
e
t
r
i
c
S
c
e
n
e
{
{
A
.
,
B
.
,
C
.
,
D
.
,
E
.
,
F
.
}
,
{
a
.
,
b
.
,
c
.
,
d
.
}
}
,
L
i
n
e
[
{
A
.
,
E
.
,
B
.
}
]
,
L
i
n
e
[
{
C
.
,
F
.
,
D
.
}
]
,
S
t
y
l
e
[
L
i
n
e
[
{
A
.
,
E
.
}
]
,
R
e
d
]
,
S
t
y
l
e
[
L
i
n
e
[
{
E
.
,
B
.
}
]
,
P
i
n
k
]
,
S
t
y
l
e
[
L
i
n
e
[
{
C
.
,
F
.
}
]
,
B
l
u
e
]
,
S
t
y
l
e
[
L
i
n
e
[
{
F
.
,
D
.
}
]
,
C
y
a
n
]
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
E
.
]
a
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
E
.
,
B
.
]
b
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
F
.
]
c
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
F
.
,
D
.
]
d
.
,
a
.
b
.
c
.
d
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
E
.
,
B
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
D
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
F
.
,
D
.
]
,
a
.
+
b
.
b
.
c
.
+
d
.
d
.
C
o
n
c
l
u
s
i
o
n
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
E
.
,
B
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
D
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
F
.
,
D
.
]
Explanations
Let
A
E
,
E
B
,
C
F
,
F
D
be magnitudes proportional separando, so that, as
A
E
is to
E
B
, so is
C
F
to
F
D
; I say that they will also be proportional componendo, that is, as
A
B
is to
B
E
, so is
C
D
to
F
D
.
For, if
C
D
be not to
D
F
as
A
B
to
B
E
, then, as
A
B
is to
B
E
, so will
C
D
be either to some magnitude less than
D
F
or to a greater.
First, let it be in that ratio to a less magnitude
D
G
.
Then, since, as
A
B
is to
B
E
, so is
C
D
to
D
G
, they are magnitudes proportional componendo; so that they will also be proportional separando.
[
V
.
1
7
]
Therefore, as
A
E
is to
E
B
, so is
C
G
to
G
D
.
But also, by hypothesis, as
A
E
is to
E
B
, so is
C
F
to
F
D
.
Therefore also, as
C
G
is to
G
D
, so is
C
F
to
F
D
.
[
V
.
1
1
]
But the first
C
G
is greater than the third
C
F
; therefore the second
G
D
is also greater than the fourth
F
D
.
[
V
.
1
4
]
But it is also less: which is impossible.
Therefore, as
A
B
is to
B
E
, so is not
C
D
to a less magnitude than
F
D
.
Similarly we can prove that neither is it in that ratio to a greater; it is therefore in that ratio to
F
D
itself.
Classes
Euclid's Elements
Theorems
Geometric Algebra
EuclidBook5