Under Development
A collection of classical geometry in computable formats along with code and diagrams.
Computable Euclid
›
Euclid Book 5
›
Browse books
Euclid Book 1
Euclid Book 2
Euclid Book 3
Euclid Book 4
Euclid Book 5
Euclid Book 6
Euclid Book 13
Euclid Book 5 Proposition 19
Statement
I
f
a
w
h
o
l
e
i
s
t
o
a
n
o
t
h
e
r
w
h
o
l
e
a
s
a
s
u
b
t
r
a
c
t
e
d
p
a
r
t
i
s
t
o
a
n
o
t
h
e
r
s
u
b
t
r
a
c
t
e
d
p
a
r
t
(
A
B
C
D
A
E
C
F
)
,
t
h
e
n
t
h
e
r
e
m
a
i
n
d
e
r
o
f
t
h
e
f
o
r
m
e
r
i
s
a
l
s
o
t
o
t
h
e
r
e
m
a
i
n
d
e
r
o
f
t
h
e
l
a
t
t
e
r
a
s
t
h
e
f
o
r
m
e
r
w
h
o
l
e
i
s
t
o
t
h
e
l
a
t
t
e
r
(
E
B
F
D
A
B
C
D
)
.
Computational Explanation
G
e
o
m
e
t
r
i
c
S
c
e
n
e
{
{
A
.
,
B
.
,
C
.
,
D
.
,
E
.
,
F
.
}
,
{
a
.
,
b
.
,
c
.
,
d
.
}
}
,
L
i
n
e
[
{
A
.
,
E
.
,
B
.
}
]
,
L
i
n
e
[
{
C
.
,
F
.
,
D
.
}
]
,
S
t
y
l
e
[
L
i
n
e
[
{
A
.
,
E
.
}
]
,
R
e
d
]
,
S
t
y
l
e
[
L
i
n
e
[
{
E
.
,
B
.
}
]
,
P
i
n
k
]
,
S
t
y
l
e
[
L
i
n
e
[
{
C
.
,
F
.
}
]
,
B
l
u
e
]
,
S
t
y
l
e
[
L
i
n
e
[
{
F
.
,
D
.
}
]
,
C
y
a
n
]
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
E
.
]
a
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
E
.
,
B
.
]
b
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
F
.
]
c
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
F
.
,
D
.
]
d
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
D
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
E
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
F
.
]
,
a
.
+
b
.
c
.
+
d
.
a
.
c
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
E
.
,
B
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
F
.
,
D
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
D
.
]
,
b
.
d
.
a
.
+
b
.
c
.
+
d
.
C
o
n
c
l
u
s
i
o
n
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
E
.
,
B
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
F
.
,
D
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
D
.
]
Explanations
For since, as
A
B
is to
C
D
, so is
A
E
to
C
F
, alternately also, as
B
A
is to
A
E
, so is
D
C
to
C
F
.
[
V
.
1
6
]
And, since the magnitudes are proportional componendo, they will also be proportional separando,
[
V
.
1
7
]
that is, as
B
E
is to
E
A
, so is
D
F
to
C
F
, and, alternately, as
B
E
is to
D
F
, so is
E
A
to
F
C
.
[
V
.
1
6
]
But, as
A
E
is to
C
F
, so by hypothesis is the whole
A
B
to the whole
C
D
.
Therefore also the remainder
E
B
will be to the remainder
F
D
as the whole
A
B
is to the whole
C
D
.
[
V
.
1
1
]
Classes
Euclid's Elements
Theorems
Geometric Algebra
EuclidBook5