Under Development
A collection of classical geometry in computable formats along with code and diagrams.
Computable Euclid
›
Euclid Book 5
›
Browse books
Euclid Book 1
Euclid Book 2
Euclid Book 3
Euclid Book 4
Euclid Book 5
Euclid Book 6
Euclid Book 13
Euclid Book 5 Proposition 20
Statement
G
i
v
e
n
t
w
o
g
r
o
u
p
s
o
f
t
h
r
e
e
m
a
g
n
i
t
u
d
e
s
(
A
B
,
C
D
,
a
n
d
E
F
;
G
H
,
I
J
,
a
n
d
K
L
)
,
i
f
t
h
e
f
i
r
s
t
m
a
g
n
i
t
u
d
e
i
s
t
o
t
h
e
s
e
c
o
n
d
a
s
t
h
e
f
o
u
r
t
h
i
s
t
o
t
h
e
f
i
f
t
h
(
A
B
C
D
G
H
I
J
)
,
t
h
e
s
e
c
o
n
d
i
s
t
o
t
h
e
t
h
i
r
d
a
s
t
h
e
f
i
f
t
h
i
s
t
o
t
h
e
s
i
x
t
h
(
C
D
E
F
I
J
K
L
)
,
a
n
d
t
h
e
f
i
r
s
t
m
a
g
n
i
t
u
d
e
i
s
g
r
e
a
t
e
r
t
h
a
n
o
r
e
q
u
a
l
t
o
t
h
e
t
h
i
r
d
(
A
B
≥
E
F
)
,
t
h
e
n
t
h
e
f
o
u
r
t
h
m
a
g
n
i
t
u
d
e
i
s
a
l
s
o
g
r
e
a
t
e
r
t
h
a
n
o
r
e
q
u
a
l
t
o
t
h
e
s
i
x
t
h
(
G
H
≥
K
L
)
.
Computational Explanation
G
e
o
m
e
t
r
i
c
S
c
e
n
e
{
{
A
.
,
B
.
,
C
.
,
D
.
,
E
.
,
F
.
,
G
.
,
H
.
,
I
.
,
J
.
,
K
.
,
L
.
}
,
{
a
.
,
b
.
,
c
.
,
d
.
,
e
.
,
f
.
}
}
,
S
t
y
l
e
[
L
i
n
e
[
{
A
.
,
B
.
}
]
,
R
e
d
]
,
S
t
y
l
e
[
L
i
n
e
[
{
C
.
,
D
.
}
]
,
R
e
d
]
,
S
t
y
l
e
[
L
i
n
e
[
{
E
.
,
F
.
}
]
,
R
e
d
]
,
S
t
y
l
e
[
L
i
n
e
[
{
G
.
,
H
.
}
]
,
B
l
u
e
]
,
S
t
y
l
e
[
L
i
n
e
[
{
I
.
,
J
.
}
]
,
B
l
u
e
]
,
S
t
y
l
e
[
L
i
n
e
[
{
K
.
,
L
.
}
]
,
B
l
u
e
]
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
a
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
D
.
]
b
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
E
.
,
F
.
]
c
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
G
.
,
H
.
]
d
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
I
.
,
J
.
]
e
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
K
.
,
L
.
]
f
.
,
a
.
b
.
d
.
e
.
,
b
.
c
.
e
.
f
.
,
a
.
≥
c
.
,
{
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
G
.
,
H
.
]
≥
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
K
.
,
L
.
]
,
d
.
≥
f
.
}
C
o
n
c
l
u
s
i
o
n
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
G
.
,
H
.
]
≥
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
K
.
,
L
.
]
Explanations
Let there be three magnitudes
A
,
B
,
C
, and others
D
,
E
,
F
equal to them in multitude, which taken two and two are in the same ratio, so that, as
A
is to
B
, so is
D
to
E
, and as
B
is to
C
, so is
E
to
F
; and let
A
be greater than
C
ex aequali; I say that
D
will also be greater than
F
; if
A
is equal to
C
, equal; and, if less, less.
For, since
A
is greater than
C
, and
B
is some other magnitude, and the greater has to the same a greater ratio than the less has,
[
V
.
8
]
therefore
A
has to
B
a greater ratio than
C
has to
B
.
But, as
A
is to
B
, so is
D
to
E
, and, as
C
is to
B
, inversely, so is
F
to
E
; therefore
D
has also to
E
a greater ratio than
F
has to
E
.
[
V
.
1
3
]
But, of magnitudes which have a ratio to the same, that which has a greater ratio is greater;
[
V
.
1
0
]
therefore
D
is greater than
F
.
Similarly we can prove that, if
A
be equal to
C
,
D
will also be equal to
F
; and if less, less.
Classes
Euclid's Elements
Theorems
Geometric Algebra
EuclidBook5
Related Theorems
EuclidBook5Proposition21
EuclidBook5Proposition22
EuclidBook5Proposition23