Under Development
A collection of classical geometry in computable formats along with code and diagrams.
Computable Euclid
›
Euclid Book 5
›
Browse books
Euclid Book 1
Euclid Book 2
Euclid Book 3
Euclid Book 4
Euclid Book 5
Euclid Book 6
Euclid Book 13
Euclid Book 5 Proposition 24
Statement
I
f
a
f
i
r
s
t
m
a
g
n
i
t
u
d
e
h
a
s
t
o
a
s
e
c
o
n
d
t
h
e
s
a
m
e
r
a
t
i
o
a
s
a
t
h
i
r
d
h
a
s
t
o
a
f
o
u
r
t
h
(
A
B
C
D
E
F
G
H
)
,
a
n
d
a
l
s
o
a
f
i
f
t
h
h
a
s
t
o
t
h
e
s
e
c
o
n
d
t
h
e
s
a
m
e
r
a
t
i
o
a
s
a
s
i
x
t
h
t
o
t
h
e
f
o
u
r
t
h
(
B
I
C
D
F
J
G
H
)
,
t
h
e
n
t
h
e
s
u
m
o
f
t
h
e
f
i
r
s
t
a
n
d
f
i
f
t
h
h
a
s
t
o
t
h
e
s
e
c
o
n
d
t
h
e
s
a
m
e
r
a
t
i
o
a
s
t
h
e
s
u
m
o
f
t
h
e
t
h
i
r
d
a
n
d
s
i
x
t
h
h
a
s
t
o
t
h
e
f
o
u
r
t
h
(
A
I
C
D
E
J
G
H
)
.
Computational Explanation
G
e
o
m
e
t
r
i
c
S
c
e
n
e
{
{
A
.
,
B
.
,
C
.
,
D
.
,
E
.
,
F
.
,
G
.
,
H
.
,
I
.
,
J
.
}
,
{
a
.
,
b
.
,
c
.
,
d
.
,
e
.
,
f
.
}
}
,
S
t
y
l
e
[
L
i
n
e
[
{
A
.
,
B
.
,
I
.
}
]
,
R
e
d
]
,
S
t
y
l
e
[
L
i
n
e
[
{
C
.
,
D
.
}
]
,
R
e
d
]
,
S
t
y
l
e
[
L
i
n
e
[
{
E
.
,
F
.
,
J
.
}
]
,
B
l
u
e
]
,
S
t
y
l
e
[
L
i
n
e
[
{
G
.
,
H
.
}
]
,
B
l
u
e
]
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
a
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
B
.
,
I
.
]
b
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
D
.
]
c
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
E
.
,
F
.
]
d
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
F
.
,
J
.
]
e
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
G
.
,
H
.
]
f
.
,
a
.
c
.
d
.
f
.
,
b
.
c
.
e
.
f
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
I
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
D
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
E
.
,
J
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
G
.
,
H
.
]
,
a
.
+
b
.
c
.
d
.
+
e
.
f
.
C
o
n
c
l
u
s
i
o
n
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
I
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
D
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
E
.
,
J
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
G
.
,
H
.
]
Explanations
Let a first magnitude
A
B
have to a second
C
the same ratio as a third
D
E
has to a fourth
F
; and let also a fifth
B
G
have to the second
C
the same ratio as a sixth
E
H
has to the fourth
F
; I say that the first and fifth added together,
A
G
, will have to the second
C
the same ratio as the third and sixth,
D
H
, has to the fourth
F
.
For since, as
B
G
is to
C
, so is
E
H
to
F
, inversely, as
C
is to
B
G
, so is
F
to
E
H
.
Since, then, as
A
B
is to
C
, so is
D
E
to
F
, and, as
C
is to
B
G
, so is
F
to
E
H
, therefore, ex aequali, as
A
B
is to
B
G
, so is
D
E
to
E
H
.
[
V
.
2
2
]
And, since the magnitudes are proportional separando, they will also be proportional componendo;
[
V
.
1
8
]
therefore, as
A
G
is to
G
B
, so is
D
H
to
H
E
.
But also, as
B
G
is to
C
, so is
E
H
to
F
; therefore, ex aequali, as
A
G
is to
C
, so is
D
H
to
F
.
[
V
.
2
2
]
Classes
Euclid's Elements
Theorems
Geometric Algebra
EuclidBook5