Under Development
A collection of classical geometry in computable formats along with code and diagrams.
Computable Euclid
›
Euclid Book 5
›
Browse books
Euclid Book 1
Euclid Book 2
Euclid Book 3
Euclid Book 4
Euclid Book 5
Euclid Book 6
Euclid Book 13
Euclid Book 5 Proposition 25
Statement
I
f
t
h
e
g
r
e
a
t
e
s
t
o
f
f
o
u
r
m
a
g
n
i
t
u
d
e
s
i
s
t
o
t
h
e
s
e
c
o
n
d
a
s
t
h
e
t
h
i
r
d
i
s
t
o
t
h
e
l
e
a
s
t
(
A
B
C
D
E
F
G
H
)
,
t
h
e
n
t
h
e
s
u
m
o
f
t
h
e
g
r
e
a
t
e
s
t
a
n
d
t
h
e
l
e
a
s
t
i
s
g
r
e
a
t
e
r
t
h
a
n
t
h
e
s
u
m
o
f
t
h
e
r
e
m
a
i
n
i
n
g
t
w
o
(
A
B
+
G
H
>
C
D
+
E
F
)
.
Computational Explanation
G
e
o
m
e
t
r
i
c
S
c
e
n
e
{
{
A
.
,
B
.
,
C
.
,
D
.
,
E
.
,
F
.
,
G
.
,
H
.
}
,
{
a
.
,
b
.
,
c
.
,
d
.
}
}
,
S
t
y
l
e
[
L
i
n
e
[
{
A
.
,
B
.
}
]
,
R
e
d
]
,
S
t
y
l
e
[
L
i
n
e
[
{
C
.
,
D
.
}
]
,
P
i
n
k
]
,
S
t
y
l
e
[
L
i
n
e
[
{
E
.
,
F
.
}
]
,
B
l
u
e
]
,
S
t
y
l
e
[
L
i
n
e
[
{
G
.
,
H
.
}
]
,
C
y
a
n
]
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
a
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
D
.
]
b
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
E
.
,
F
.
]
c
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
G
.
,
H
.
]
d
.
,
a
.
>
b
.
>
c
.
>
d
.
,
a
.
b
.
c
.
d
.
,
{
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
+
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
G
.
,
H
.
]
>
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
D
.
]
+
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
E
.
,
F
.
]
,
a
.
+
d
.
>
b
.
+
c
.
}
C
o
n
c
l
u
s
i
o
n
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
+
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
G
.
,
H
.
]
>
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
D
.
]
+
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
E
.
,
F
.
]
Explanations
Let the four magnitudes
A
B
,
C
D
,
E
,
F
be proportional so that, as
A
B
is to
C
D
, so is
E
to
F
, and let
A
B
be the greatest of them and
F
the least; I say that
A
B
,
F
are greater than
C
D
,
E
.
For let
A
G
be made equal to
E
, and
C
H
equal to
F
.
Since, as
A
B
is to
C
D
, so is
E
to
F
, and
E
is equal to
A
G
, and
F
to
C
H
, therefore, as
A
B
is to
C
D
, so is
A
G
to
C
H
.
And since, as the whole
A
B
is to the whole
C
D
, so is the part
A
G
subtracted to the part
C
H
subtracted, the remainder
G
B
will also be to the remainder
H
D
as the whole
A
B
is to the whole
C
D
.
[
V
.
1
9
]
But
A
B
is greater than
C
D
; therefore
G
B
is also greater than
H
D
.
And, since
A
G
is equal to
E
, and
C
H
to
F
, therefore
A
G
,
F
are equal to
C
H
,
E
.
And if,
G
B
,
H
D
being unequal, and
G
B
greater,
A
G
,
F
be added to
G
B
and
C
H
,
E
be added to
H
D
, it follows that
A
B
,
F
are greater than
C
D
,
E
.
Classes
Euclid's Elements
Theorems
Geometric Algebra
EuclidBook5