Under Development
A collection of classical geometry in computable formats along with code and diagrams.
Computable Euclid
›
Euclid Book 5
›
Browse books
Euclid Book 1
Euclid Book 2
Euclid Book 3
Euclid Book 4
Euclid Book 5
Euclid Book 6
Euclid Book 13
Euclid Book 5 Proposition 7
Statement
T
h
e
r
a
t
i
o
s
o
f
t
w
o
e
q
u
a
l
m
a
g
n
i
t
u
d
e
s
(
A
B
C
D
)
t
o
a
t
h
i
r
d
a
r
e
e
q
u
a
l
(
A
B
E
F
C
D
E
F
)
.
S
i
m
i
l
a
r
l
y
,
t
h
e
r
a
t
i
o
s
o
f
a
m
a
g
n
i
t
u
d
e
t
o
t
w
o
e
q
u
a
l
m
a
g
n
i
t
u
d
e
s
a
r
e
e
q
u
a
l
(
E
F
A
B
E
F
C
D
)
.
Computational Explanation
G
e
o
m
e
t
r
i
c
S
c
e
n
e
{
A
.
,
B
.
,
C
.
,
D
.
,
E
.
,
F
.
}
,
{
x
.
,
y
.
,
z
.
}
,
S
t
y
l
e
[
L
i
n
e
[
{
{
A
.
,
B
.
}
,
{
C
.
,
D
.
}
}
]
,
R
e
d
]
,
S
t
y
l
e
[
L
i
n
e
[
{
E
.
,
F
.
}
]
,
B
l
u
e
]
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
x
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
D
.
]
y
.
,
x
.
y
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
E
.
,
F
.
]
z
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
E
.
,
F
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
D
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
E
.
,
F
.
]
,
x
.
z
.
y
.
z
.
,
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
E
.
,
F
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
E
.
,
F
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
D
.
]
,
z
.
x
.
z
.
y
.
C
o
n
c
l
u
s
i
o
n
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
A
.
,
B
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
E
.
,
F
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
C
.
,
D
.
]
E
u
c
l
i
d
e
a
n
D
i
s
t
a
n
c
e
[
E
.
,
F
.
]
Explanations
Let
A
,
B
be equal magnitudes and
C
any other, chance, magnitude; I say that each of the magnitudes
A
,
B
has the same ratio to
C
, and
C
has the same ratio to each of the magnitudes
A
,
B
.
For let equimultiples
D
,
E
of
A
,
B
be taken, and of
C
another, chance, multiple
F
.
Then, since
D
is the same multiple of
A
that
E
is of
B
, while
A
is equal to
B
, therefore
D
is equal to
E
.
But
F
is another, chance, magnitude.
If therefore
D
is in excess of
F
,
E
is also in excess of
F
, if equal to it, equal; and, if less, less.
And
D
,
E
are equimultiples of
A
,
B
, while
F
is another, chance, multiple of
C
; therefore, as
A
is to
C
, so is
B
to
C
.
[
V
.
D
e
f
.
5
]
I say next that
C
also has the same ratio to each of the magnitudes
A
,
B
.
For, with the same construction, we can prove similarly that
D
is equal to
E
; and
F
is some other magnitude.
If therefore
F
is in excess of
D
, it is also in excess of
E
, if equal, equal; and, if less, less.
And
F
is a multiple of
C
, while
D
,
E
are other, chance, equimultiples of
A
,
B
; therefore, as
C
is to
A
, so is
C
to
B
.
[
V
.
D
e
f
.
5
]
Classes
Euclid's Elements
Theorems
Geometric Algebra
EuclidBook5
Related Theorems
EuclidBook5Proposition9a
EuclidBook5Proposition9b